Cho hình chóp S.ABCD có ABCD là hình chữ nhật có tâm O, AB a AC=3a. SA vuông góc với mp (ABCD); SC-5a. a) Chứng minh BC l S4F. b) Trong tam giác SAD kẻ AH vuông góc SD. Chứng minh AH _ (SCD) c Xác định và tinh góc giữa SO và (SCD).
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AC=a căn 3, BC = 2a, SA vuông góc (ABCD), SA=3a. Gọi O là giao điểm của AC và BD. a) Cmr: CD vuông góc mp (SAD) b) Cmr: (SAC) vuông góc mp (SBD) c) Tính góc giữa SC v à mp (ABCD) d) Tính góc giữa mp ( SAB) và mp (SBC). e) Tính khoảng cách từ A đến mp ( SBD)
a: CD vuông góc AD; CD vuông góc SA
=>CD vuông góc (SAD)
b: BD vuông góc AC; BD vuông góc SA
=>BD vuông góc (SAC)
=>(SBD) vuông góc (SAC)
Do \(OC=\dfrac{1}{2}AC\Rightarrow d\left(O;\left(SCD\right)\right)=\dfrac{1}{2}d\left(A;\left(SCD\right)\right)\)
Kẻ \(AH\perp SD\Rightarrow AH\perp\left(SCD\right)\)
\(\Rightarrow AH=d\left(A;\left(SCD\right)\right)\)
\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AD^2}\Rightarrow AH=\dfrac{SA.AD}{\sqrt{SA^2+AD^2}}=\sqrt{2}\)
\(\Rightarrow d\left(O;\left(SCD\right)\right)=\dfrac{1}{2}AH=\dfrac{\sqrt{2}}{2}\)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AC=a căn 3, BC = 2a, SA vuông góc (ABCD), SA=3a. Gọi O là giao điểm của AC và BD.
a) Cmr: CD vuông góc mp (SAD)
b) Cmr: (SAC) vuông góc mp (SBD)
c) Tính góc giữa SC v à mp (ABCD)
d) Tính góc giữa mp ( SAB) và mp (SBC).
e) Tính khoảng cách từ A đến mp ( SBD)
a: CD vuông góc AD; CD vuông góc SA
=>CD vuông góc (SAD)
b: BD vuông góc AC; BD vuông góc SA
=>BD vuông góc (SAC)
=>(SBD) vuông góc (SAC)
c: (SC;(ABCD))=(CS;CA)=góc SCA
tan SCA=SA/AC=căn 3
=>góc SCA=60 độ
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AC=a căn 3, BC = 2a, SA vuông góc (ABCD), SA=3a. Gọi O là giao điểm của AC và BD. a) Tính góc giữa mp ( SAB) và mp (SBC). b) Tính khoảng cách từ A đến mp ( SBD)
Tuy nhiên đề cho giá trị cạnh AC với BC bị sai. Cạnh huyền AC (\(a\sqrt{3}\)) sao lại có giá trị nhỏ hơn cạnh góc vuông BC (2a) nhỉ?
cho hình chóp S.ABCD có đáy abcd là hình chữ nhật tâm O, AD=4, AB=2, SA=2 và SA vuông góc (ABCD). tính góc hơp boi 2 đthg SO và mp(SAD)?
Gọi M là trung điểm AD \(\Rightarrow OM\perp AD\Rightarrow OM\perp\left(SAD\right)\)
\(\Rightarrow\widehat{MSO}\) là góc giữa SO và (SAD)
\(SM=\sqrt{SA^2+\left(\dfrac{AD}{2}\right)^2}=2\sqrt{2}\)
\(OM=\dfrac{1}{2}CD=1\)
\(tan\widehat{MSO}=\dfrac{OM}{SM}=\dfrac{1}{2\sqrt{2}}\) \(\Rightarrow\widehat{MSO}\approx19^028'\)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, BC = 2a, SA = 3a. Biết SA vuông góc với mặt phẳng (ABCD). Thể tích khối chóp S.ABCD là:
A. a 3
B. 2 a 3
C. 6 a 3
D. 12 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với đáy (ABCD). Biết AB=a, BC=3a, SA=2a.Tính thể tích V của khối chóp S.ABCD.
A. V = 3 a 3
B. V = 2 a 3
C. V = a 3
D. V = 6 a 3
Đáp án B
Thể tích khối chóp S.ABCD là:
V A B C D = 1 3 S A . S A B C D = 1 3 2 a .3 a 2 = 2 a 3
Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = a, AD = 2a, SA = 2a, SA vuông góc với mp(ABCD). Tính thể tích khối chóp S.ABCD.
A. 4 a 3 3 (đvtt)
B. 4 a 3 (đvtt)
C. 2 a 3 3 (đvtt)
D. 2 a 3 (đvtt)
Đáp án A
Ta có:
V S . A B C D = 1 3 S A . S A B C D = 1 3 .2 a . a .2 a = 4 3 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a; AD = 3a. Cạnh bên SA vuông góc với đáy ABCD và SA = a. Tính thể tích V của khối chóp S.ABCD.
A. V=6a3
B. V=a3
C. V=3a3
D. V=2a3.