Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Gia Khoa

Những câu hỏi liên quan
Pham Thanh Tam
Xem chi tiết
Trương Thị Khánh Linh
15 tháng 4 2020 lúc 8:14

   R(x) =           2x2 + 3x - 1

-  M(x) =   -x3 + x2 

                x3 + x2 + 3x - 1

Vậy R(x) - M(x) = x3 + x+ 3x - 1

Khách vãng lai đã xóa
Kudo Shinichi
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2022 lúc 10:20

1: \(A=\left(-x+5\right)\left(x-2\right)+\left(x-7\right)\left(x+7\right)\)

\(=-x^2+2x+5x-10+x^2-49=7x-59\)

\(B=\left(3x+1\right)^2-\left(3x-2\right)\left(3x+2\right)\)

\(=9x^2+6x+1-9x^2+4=6x+5\)

=>7x-59=6x+5

=>x=64

2: \(A=\left(5x-1\right)\left(x+1\right)-2\left(x-3\right)^2\)

\(=5x^2+5x-x-1-2x^2+12x-9\)

\(=3x^2+16x-10\)

\(B=\left(x+2\right)\left(3x-1\right)-\left(x+4\right)^2+x^2-x\)

\(=3x^2-x+6x-2-x^2-8x-16+x^2-x\)

\(=3x^2-4x-18\)

=>16x-10=-4x-18

=>20x=-8

hay x=-2/5

Lê Thanh Dương
Xem chi tiết
KAl(SO4)2·12H2O
26 tháng 3 2020 lúc 16:39

a) (3x + 1)^2 - 2(3x + 1)(3x - 5) + (3x - 5)^2 

= 9x^2 + 6x + 1 - 18x^2 + 24x + 10 + 9x^2 - 30x + 25

= 36

b) (3x^2 - y)^2

= 9x^4 - 6x^2y + y^2

c) (3x + 5)^2 + (3x - 5)^2 - (3x + 2)(3x - 2)

= 9x^2 + 30x + 25 + 9x^2 - 30x + 25 - 9x^2 + 4

= 9x^2 + 54

d) 2x(2x - 1)^2 - 3x(x + 3)(x - 3) - 4x(x + 1)^2

= 8x^3 - 8x^2 + 2x - 3x^2 + 27x - 4x^3 - 8x^2 - 4x

= x^3 - 16x^2 + 25x

e) (x - 2)(x^2 + 2x + 4) - (x + 1)^2 + 3(x - 1)(x + 1)

= x^3 - 8 - x^2 - 2x - 1 + 3x^2 - 2

= x^3 + 2x^2 - 2x - 12

f) (x^4 - 5x^2 + 25)(x^2 + 5) - (2 + x^2)^2 + 3(1 + x^2)^2

= x^6 + 125 - 4 - 4x^2 - x^2 + 3 + 6x^2 + 3x^4

= x^6 + 2x^4 + 2x^2 + 124

Khách vãng lai đã xóa
nghia
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2023 lúc 13:53

2:

a: =>x^2+3x-4x-12-(x^2-5x+x-5)=8

=>x^2-x-12-x^2+4x+5=8

=>3x-7=8

=>3x=15

=>x=5

b: =>3x^2+3x-2x-2-3x^2-21x=13

=>-20x=15

=>x=-3/4

c: =>x^2-25-x^2-2x=9

=>-2x=25+9=34

=>x=-17

d: =>x^3-1-x^3+3x=1

=>3x-1=1

=>3x=2

=>x=2/3

Nguyen Dang Khoa
Xem chi tiết
Nguyễn Thành Trương
20 tháng 3 2020 lúc 14:54

Bài 1.

\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)

Khách vãng lai đã xóa
Nguyễn Thành Trương
20 tháng 3 2020 lúc 15:02

Bài 2.

\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)

ĐK: \(x\ne2\)

\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)

ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)

\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)

Khách vãng lai đã xóa
Nguyễn Thành Trương
20 tháng 3 2020 lúc 15:21

Bài 2.

\(a)5 + \dfrac{{96}}{{{x^2} - 16}} = \dfrac{{2x - 1}}{{x + 4}} - \dfrac{{3x - 1}}{{4 - x}}\)

ĐK: \(x\ne\pm4\)

\( Pt \Leftrightarrow \dfrac{{96}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} - \dfrac{{2x - 1}}{{x + 4}} - \dfrac{{3x - 1}}{{x - 4}} = - 5\\ \Leftrightarrow \dfrac{{96 - \left( {2x - 1} \right)\left( {x - 4} \right) - \left( {3x - 1} \right)\left( {x + 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = - 5\\ \Leftrightarrow \dfrac{{ - 5{x^2} - 2x + 96}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = - 5\\ \Leftrightarrow - 5{x^2} - 2x + 96 = - 5\left( {{x^2} - 16} \right)\\ \Leftrightarrow 96 - 2x = 80\\ \Leftrightarrow - 2x = - 16\\ \Leftrightarrow x = 8\left( {tm} \right)\\ b)\dfrac{{3x + 2}}{{3x - 2}} - \dfrac{6}{{2 + 3x}} = \dfrac{{9{x^2}}}{{9{x^2} - 4}} \)

ĐK: \(x \ne \dfrac{2}{3};x \ne -\dfrac{2}{3}\)

\( Pt \Leftrightarrow \dfrac{{3x + 2}}{{3x - 2}} - \dfrac{6}{{2 + 3x}} - \dfrac{{9{x^2}}}{{9{x^2} - 4}} = 0\\ \Leftrightarrow \dfrac{{{{\left( {2 + 3x} \right)}^2} - 6\left( {3x - 2} \right) - 9{x^2}}}{{\left( {3x - 2} \right)\left( {2 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{16 - 6x}}{{\left( {3 - 2x} \right)\left( {2 + 3x} \right)}} = 0\\ \Leftrightarrow 16 - 6x = 0\\ \Leftrightarrow - 6x = - 16\\ \Leftrightarrow x = \dfrac{8}{3}\left( {tm} \right)\\ c)\dfrac{{x + 1}}{{{x^2} + x + 1}} - \dfrac{{x - 1}}{{{x^2} - x + 1}} = \dfrac{3}{{x\left( {{x^4} + {x^2} + 1} \right)}} \)

Ta có: \(x(x^4+x^2+1)=x[(x^2+1)^2-x^2]=x(x^2+x+1)(x^2-x+1)\)

Do \(\left\{ \begin{array}{l} {x^2} + x + 1 = {\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0\forall x\\ {x^2} - x + 1 = \left( {x - \dfrac{1}{2}} \right) + \dfrac{3}{4} > 0\forall x \end{array} \right.\) nên phương trình xác định với mọi $x \ne 0$

Quy đồng, rồi biến đổi phương trình về dạng \(2x=3 \Leftrightarrow x =\dfrac{3}{2} (tm)\)

Khách vãng lai đã xóa
Trần Huyền My
Xem chi tiết
Hoàng Kim Lê
Xem chi tiết
Luyri Vũ
Xem chi tiết
dươngloan
Xem chi tiết
Phạm Hải Nam
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 10 2021 lúc 22:06

a: Ta có: \(\left(x^2-2x+2\right)\left(x^2-2\right)\left(x^2+2x+2\right)\left(x^2+2\right)\)

\(=\left(x^4-4\right)\left[\left(x^2+2\right)^2-4x^2\right]\)

\(=\left(x^4-4\right)\left(x^4+4x^2+4-4x^2\right)\)

\(=\left(x^4-4\right)\cdot\left(x^4+4\right)\)

\(=x^8-16\)

b: Ta có: \(\left(x+1\right)^2-\left(x-1\right)^2+3x^2-3x\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-x^2+2x-1+3x^2-3x\left(x^2-1\right)\)

\(=3x^2+4x-3x^3+3x\)

\(=-3x^3+3x^2+7x\)