Tứ giác abcd có bốn đỉnh thuộc đường tròn (o) có a =80 b=70 thì số đo của (c) và (d) lần lượt là
Cho tứ giác ABCD có AB= AD, CD = CB và tổng số đo hai góc đối diện tại các đỉnh A, C bằng 90*. Gọi I, K lần lượt là tâm các đường tròn ngoại tiếp các tam giác ABD và CBD. CMR: I, K, B , D cùng thuộc 1 đường tròn
Cho tứ giác ABCD có góc A= Góc C= 90 độ
a) Chứng minh bốn đỉnh của tứ giác cùng thuộc 1 đường tròn
b) Chứng minh AC\(\le\)BD
c) Nếu AC=BD thì tứ giác ABCD là hình gì ?
Cho tứ giác ABCD ngoại tiếp đường tròn (O). Vẽ ra phía ngoài tứ giác này bốn nửa đường tròn có đường kính lần lượt là bốn cạnh của tứ giác. Chứng minh rằng tổng độ dài của hai nửa đường tròn có đường kính là hai cạnh đối diện bằng tổng độ dài hai nửa đường tròn kia
Đặt AB = a; BC = b; CD = c; AD = d
C A B 2 = 2 π . a 2 2 = π . a 2 . Tương tự C C D 2 = π . c 2
Vậy C A B 2 + C C D 2 = π 2 a + c
Có C B C 2 + C C D 2 = π 2 b + d
Tứ giác ABCD ngoại tiếp, kết hợp tính chất tiếp => a + c = b + d => ĐPCM
1) tứ giác ABCD có góc B = góc D =90 độ ...a) chứng minh rằng bốn điểm A B C D cùng thuộc một đường tròn....b)So sánh độ dài AC và BD.Nếu AC bằng BD thì tứ giác ABCD là hình gì
a: Xét tứ giác ABCD có
\(\widehat{B}+\widehat{D}=180^0\)
nên ABCD là tứ giác nội tiếp
Cho tứ giác ABCD có góc C+góc D=90 độ . Gọi M, N, P, Q lần lượt là trung điểm
của AB, BD, DC và CA. Chứng minh:
a) Tứ giác MNPQ là hình bình hành.
b) Bốn điểm M, N, P, Q cùng thuộc một đường tròn.
Bài 1: Cho tứ giác ABCD có góc A = C = 90°
a, Chứng minh 4 đỉnh của tứ giác cùng thuộc một đường tròn
b, chứng minh AC ≤ BD trong trường hợp nào thì AC = BD
Bài 2: đường tròn tâm O bán kính 5cm và dây AC = 8. Gọi I là trung điểm của AC Trên tia OI cắt đường tròn tại B
a,Tính độ dài đoạn thẳng AB
b, Gọi D là điểm đối xứng với B qua O .Tính khoảng cách từ tâm O đến đường thẳng CD và diện tích tứ giác ABCD
Mọi người vẽ hình và chứng minh chi tiết giúp mình với ạ. Mình cảm ơnn
Bài 1:
a: Xét tứ giác ABCD có
\(\widehat{A}+\widehat{C}=180^0\)
nên ABCD là tứ giác nội tiếp
hay A,B,C,D cùng thuộc 1 đường tròn
Cho hình lập phương ABCD.A′B′C′D′. Gọi O,O′ lần lượt là tâm của hai hình vuông ABCD và A′B′C′D′. Gọi V 1 là thể tích của khối trụ tròn xoay có đáy là 2 đường tròn ngoại tiếp hình vuông ABCD và A′B′C′D′, V 2 là thể tích khối nón tròn xoay đỉnh O và có đáy là đường tròn nội tiếp hình vuông A′B′C′D′. Tỷ số thể tích V 1 V 2 là
A. 6
B. 2
C. 8
D. 4
a)Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MC của đường tròn, A và C là các tiếp điểm. Kẻ đường kính BC. Biết 70 độ thì góc AMC bằng:
b)Cho đường tròn (O; 2cm). Từ điểm A sao cho OA = 4cm , vẽ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là tiếp điểm). Chu vi tam giác ABC bằng:
c)Cho nửa đường tròn tâm O, đường kính AB cm =10 . Điểm M thuộc nửa đường tròn. Qua M kẻ tiếp tuyến xy với nửa đường tròn. Gọi D và C lần lượt là hình chiếu của A, B trên xy. Diện tích lớn nhất của tứ giác ABCD là:
a, 700 góc nào bạn ?
b, Vì AB là tiếp tuyến (O) => ^ABO = 900
AO giao BC = K
AB = AC ; OB = OC = R
Vậy OA là đường trung trực đoạn BC
Xét tam giác ABO vuông tại B, đường cao BK
Áp dụng định lí Pytago tam giác ABO vuông tại B
\(AB=\sqrt{AO^2-BO^2}=\sqrt{16-4}=2\sqrt{3}\)cm
Áp dụng hệ thức : \(BK.AO=BO.AB\Rightarrow BK=\frac{BO.AB}{AO}=\frac{4\sqrt{3}}{4}=\sqrt{3}\)cm
Vì AO là đường trung trực => \(BC=2KB=2\sqrt{3}\)cm
Chu vi tam giác ABC là :
\(P_{ABC}=AB+AC+BC=2AB+BC=4\sqrt{3}+2\sqrt{3}=6\sqrt{3}\)cm
Cho tam giác ABC có B = 70° ; C = 50° nội tiếp trong đường tròn ( O ) .
a ) Tính số đo cung BC .
b ) Gọi AD , BE , CF lần lượt là các đường phân giác của các góc A , B , C . Tính : • Số đo các góc BEC , BED và FDE . • Số đo các cung CBF ; BCE . .
c ) Cho BC = 6 cm . Tính bán kính đường tròn ( O ) .