góc C=180-80=100 độ
góc D=180-70=110 độ
góc C=180-80=100 độ
góc D=180-70=110 độ
Cho tứ giác ABCD có AB= AD, CD = CB và tổng số đo hai góc đối diện tại các đỉnh A, C bằng 90*. Gọi I, K lần lượt là tâm các đường tròn ngoại tiếp các tam giác ABD và CBD. CMR: I, K, B , D cùng thuộc 1 đường tròn
Cho tứ giác ABCD có góc A= Góc C= 90 độ
a) Chứng minh bốn đỉnh của tứ giác cùng thuộc 1 đường tròn
b) Chứng minh AC\(\le\)BD
c) Nếu AC=BD thì tứ giác ABCD là hình gì ?
Cho tứ giác ABCD ngoại tiếp đường tròn (O). Vẽ ra phía ngoài tứ giác này bốn nửa đường tròn có đường kính lần lượt là bốn cạnh của tứ giác. Chứng minh rằng tổng độ dài của hai nửa đường tròn có đường kính là hai cạnh đối diện bằng tổng độ dài hai nửa đường tròn kia
Cho tứ giác ABCD có góc C+góc D=90 độ . Gọi M, N, P, Q lần lượt là trung điểm
của AB, BD, DC và CA. Chứng minh:
a) Tứ giác MNPQ là hình bình hành.
b) Bốn điểm M, N, P, Q cùng thuộc một đường tròn.
a)Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MC của đường tròn, A và C là các tiếp điểm. Kẻ đường kính BC. Biết 70 độ thì góc AMC bằng:
b)Cho đường tròn (O; 2cm). Từ điểm A sao cho OA = 4cm , vẽ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là tiếp điểm). Chu vi tam giác ABC bằng:
c)Cho nửa đường tròn tâm O, đường kính AB cm =10 . Điểm M thuộc nửa đường tròn. Qua M kẻ tiếp tuyến xy với nửa đường tròn. Gọi D và C lần lượt là hình chiếu của A, B trên xy. Diện tích lớn nhất của tứ giác ABCD là:
Cho tam giác ABC có B = 70° ; C = 50° nội tiếp trong đường tròn ( O ) .
a ) Tính số đo cung BC .
b ) Gọi AD , BE , CF lần lượt là các đường phân giác của các góc A , B , C . Tính : • Số đo các góc BEC , BED và FDE . • Số đo các cung CBF ; BCE . .
c ) Cho BC = 6 cm . Tính bán kính đường tròn ( O ) .
1. Cho đường tròn (O) đường kính AB. Vẽ đường tròn (I) đường kính OA. Bán kính OC của đường tròn (O) cắt đường tròn (I) tại D. Vẽ CH vuông góc AB. Chứng minh tứ giác ACDH là hình thang cân.
2. Cho tứ giác ABCD có góc C+góc D=90 độ. Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC và CA. Chứng minh rằng bốn điểm M, N, P, Q cùng nằm trên một đường tròn.
Cho tứ giác ABCD có góc B bằng góc D bằng 90 độ.
a) Chứng minh bốn điểm A,B,C,D cùng thuộc một đường tròn.
b) Từ tâm của đường tròn đi qua 4 đỉnh tứ giác ABCD kẻ đường vuông góc với BC tại K cắt tiếp tuyến tại C của đường tròn ở điểm M. Chứng minh BM cũng là tiếp tuyến của đường tròn.
Các bạn giúp mình nhé. Mình đang cần gấp!!!
Tứ giác ABCD không phải hình thang có bốn đỉnh A,B,C,Dcùng nằm trên đường tròn (O; R),AB cắt CD tại M.
Kết quả phép so sánh MA.MB và MC.MD là: