a: Xét tứ giác ABCD có
\(\widehat{B}+\widehat{D}=180^0\)
nên ABCD là tứ giác nội tiếp
a: Xét tứ giác ABCD có
\(\widehat{B}+\widehat{D}=180^0\)
nên ABCD là tứ giác nội tiếp
Tứ giác ABCD có \(\widehat{B}=\widehat{D}=90^0\)
a) Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn
b) So sánh độ dàu AC và BD. Nếu AC = BD thì tứ giác ABCD là hình gì ?
Bài 1: Cho tứ giác ABCD có góc A = C = 90°
a, Chứng minh 4 đỉnh của tứ giác cùng thuộc một đường tròn
b, chứng minh AC ≤ BD trong trường hợp nào thì AC = BD
Bài 2: đường tròn tâm O bán kính 5cm và dây AC = 8. Gọi I là trung điểm của AC Trên tia OI cắt đường tròn tại B
a,Tính độ dài đoạn thẳng AB
b, Gọi D là điểm đối xứng với B qua O .Tính khoảng cách từ tâm O đến đường thẳng CD và diện tích tứ giác ABCD
Mọi người vẽ hình và chứng minh chi tiết giúp mình với ạ. Mình cảm ơnn
Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng :
a) Bốn điểm B, E, D, C cùng thuộc một đường tròn
b) DE < BC
Cho đường tròn (O), đường kính AD = 2R. Vẽ cung tâm D bán kính R, cung nàu cắt đường tròn (O) ở B và C
a) Tứ giác OBCD là hình gì ? Vì sao ?
b) Tính số đo các góc CBD, CBO, OBA ?
c) Chứng minh rằng tam giác ABC là tam giác đều ?
Cho đường tròn (O; R), dây AB khác đường kính . Vẽ về hai phía của AB các dây AC, AD. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ B đến AC và AD. Chứng minh rằng :
a) Bốn điểm A, H, B, K thuộc cùng một đường tròn
b) HK < 2R
Cho hình thang cân ABCD có AD song song với BCvà AD=2CD= 2BC. Chứng minh rằng bốn điểm A,B,C,Dcùng nằm trên một đường tròn tâm Ovà AC⊥OB.
Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng:
a) Bốn điểm B, E, D, C cùng thuộc một đường tròn.
b) DE<BC
(ko cần vẽ hình)
Cho tam giác ABC (AB < AC) có hai đường cao BD và CE cắt nhau tại H. Lấy I là trung điểm của BC.
a) Gọi K là điểm đối xứng của H qua I. CMR: tứ giác BHCK là hình bình hành
b) Xác định tâm O của đường tròn qua các điểm A, B, K, C
c) Chứng minh: OI // AH
d) CMR: BE.BA + CD.CA = \(BC^2\)
Cho tam giác MNP nhọn các đường cao NE, FE a, chứng minh bốn điểm N,P, F, E thuộc một đường tròn b, So sánh NP và EF