Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tứ diệp thảo mãi mãi yêu...
Xem chi tiết
Thanh Tùng DZ
3 tháng 12 2017 lúc 20:38

Ta có :

1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x \(⋮\)13 và y \(⋮\)7

đặt x  = 13k ; y = 7t ( k, t \(\in\)N* ) , từ 7x2 + 13y2 = 1820 ta có :

7 . 132 . k2 + 13 . 72 . t2 = 1820

nên : 13k2 + 7t2 = 20

suy ra : k2 = 1 ; t2 = 1 vì k,t \(\in\)N* nên k = t = 1 do đó x = 13 , y = 7 

Vậy ...

Trần Minh Tâm
3 tháng 12 2017 lúc 21:53

y = 7 đó

Vũ Quang Tùng
14 tháng 12 2017 lúc 20:20

Cho 3 số nguyên tố p, q, r sao cho p^q + q^p = r. Chứng minh rằng trong ba số p, q, r luôn có một số bằng 2.

Thiên bình cute
Xem chi tiết
Nguyễn Lan Phương
22 tháng 4 2021 lúc 13:26

Ta có :

1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x ⋮⋮13 và y ⋮⋮7

đặt x  = 13k ; y = 7t ( k, t ∈∈N* ) , từ 7x2 + 13y2 = 1820 ta có :

7 . 132 . k2 + 13 . 72 . t2 = 1820

nên : 13k2 + 7t2 = 20

suy ra : k2 = 1 ; t2 = 1 vì k,t ∈∈N* nên k = t = 1 do đó x = 13 , y = 7 

Vậy ...

Khách vãng lai đã xóa
Trần Hoài Trang
22 tháng 4 2021 lúc 13:30

Ta có :

  1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x ⋮ 13 và y ⋮ 7

Đặt x  = 13k ; y = 7t ( k, t ∈ N* ) , từ 7x2 + 13y2 = 1820 ta có :

  7 . 132 . k2 + 13 . 72 . t2 = 1820

nên : 13k2 + 7t2 = 20

suy ra : k2 = 1 ; t2 = 1 vì k,t ∈∈N* nên k = t = 1 do đó x = 13 , y = 7 

Vậy x = 13

       y = 7

Chúc bạn học tốt nhá

Khách vãng lai đã xóa
Pearl
Xem chi tiết
Đặng Viết Thái
24 tháng 2 2019 lúc 19:44

vì \(y\le9\) ta có bảng:

y123456789
x\(\frac{106}{7}\)\(\frac{93}{7}\)\(\frac{80}{7}\)\(\frac{67}{7}\)\(\frac{54}{7}\)\(\frac{41}{7}\)4\(\frac{11}{7}\)\(\frac{2}{7}\)

vậy x=4 và y=7 thỏa mãn

Nguyễn Nhật Minh
24 tháng 2 2019 lúc 19:50

x,y cũng có thể là số nguyên âm mà bạn

Đặng Viết Thái
24 tháng 2 2019 lúc 19:51

x,y ko thể là số âm dc

phuong anh nguyen
Xem chi tiết
Pham Van Hung
25 tháng 11 2018 lúc 9:46

\(8x+13y-xy=106\)

\(\Rightarrow-x\left(y-8\right)+13\left(y-8\right)=106-104\)

\(\Rightarrow\left(13-x\right)\left(y-8\right)=2\)

Từ đó tìm được x,y

Lizy
Xem chi tiết
Akai Haruma
14 tháng 1 lúc 0:14

Lời giải:
$x^2+xy-6y^2+x+13y=17$

$\Leftrightarrow x^2+x(y+1)-(6y^2-13y+17)=0$

Coi đây là pt bậc 2 ẩn $x$ thì để pt có nghiệm nguyên thì:

$\Delta = (y+1)^2+4(6y^2-13y+17)$ là scp

$\Leftrightarrow 25y^2-50y+69$ là scp

Đặt $25y^2-50y+69=t^2$ với $t$ là số tự nhiên

$\Leftrightarrow (5y-5)^2+44=t^2$
$\Leftrightarrow 44=(t-5y+5)(t+5y-5)$

Đến đây là dạng pt tích đơn giản rồi. Bạn có thể tự giải.

Vũ Khánh Chi
Xem chi tiết
Akai Haruma
5 tháng 2 lúc 17:42

Lời giải:

$x^2+xy-6y^2+x+13y=17$

$\Leftrightarrow x^2+x(y+1)+(-6y^2+13y-17)=0$

Coi đây là pt bậc 2 ẩn $x$. Để pt có nghiệm nguyên thì:

$\Delta=(y+1)^2-4(-6y^2+13y-17)=t^2$ với $t$ là số tự nhiên

$\Leftrightarrow 25y^2-50y+69=t^2$

$\Leftrightarrow (5y-5)^2+44=t^2$

$\Leftrightarrow 44=t^2-(5y-5)^2=(t-5y+5)(t-5y-5)$

Đến đây là dạng pt tích đơn giản rồi.

 

Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đức Trí
18 tháng 8 2023 lúc 18:18

\(3x^2+3xy-17=7x-2y\)

\(\Leftrightarrow3x\left(x+y\right)+2x+2y-9x-17=0\)

\(\Leftrightarrow3x\left(x+y\right)+2\left(x+y\right)-9x-6-11=0\)

\(\Leftrightarrow\left(x+y\right)\left(3x+2\right)-3\left(3x+2\right)=11\)

\(\Leftrightarrow\left(3x+2\right)\left(x+y-3\right)=11\)

\(\Leftrightarrow\left(3x+2\right);\left(x+y-3\right)\in\left\{-1;1;-11;11\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-7\right);\left(-\dfrac{1}{3};\dfrac{43}{3}\right);\left(-\dfrac{11}{3};\dfrac{17}{3}\right);\left(3;1\right)\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-7\right);\left(3;1\right)\right\}\left(x;y\inℤ\right)\)

I\\\
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 3 2023 lúc 8:17

=>7x+y(2x-3)=7

=>7x-10,5+y(2x-3)=7-10,5

=>(x-1,5)(2y+7)=-3,5

=>(2x-3)(2y+7)=-7

=>\(\left(2x-3;2y+7\right)\in\left\{\left(1;-7\right);\left(-7;1\right);\left(-1;7\right);\left(7;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;-7\right);\left(-2;-3\right);\left(1;0\right);\left(5;-4\right)\right\}\)

Mai Tiến Đỗ
Xem chi tiết