Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NONAME
Xem chi tiết
tran huu dinh
Xem chi tiết
dbrby
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 9 2019 lúc 21:55

\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=6\)

\(P=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{xy+yz+zx}{3}=2\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt{2}\)

dbrby
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 11 2019 lúc 23:04

\(a+b+c=6abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=6\)

\(P=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(xy+yz+zx\right)^2}{3\left(xy+yz+zx\right)}=\frac{xy+yz+zx}{3}=2\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt{2}\) hay \(a=b=c=\frac{1}{\sqrt{2}}\)

Khách vãng lai đã xóa
bao than đen
Xem chi tiết
trung le quang
Xem chi tiết
Akai Haruma
6 tháng 7 2019 lúc 23:56

Bạn tham khảo lời giải bài 4 link sau:

Câu hỏi của Bonking - Toán lớp 9 | Học trực tuyến

Cao Chi Hieu
Xem chi tiết
Kurosaki Akatsu
13 tháng 8 2017 lúc 14:58

Áp dụng BĐT Cauchy , có :

\(\frac{a^3+b^3}{ab}+\frac{b^3+c^3}{bc}+\frac{c^3+a^3}{ca}\ge\frac{2\sqrt{a^3.b^3}}{ab}+\frac{2\sqrt{b^3.c^3}}{bc}+\frac{2\sqrt{c^3.a^3}}{ca}\)

\(\Leftrightarrow...........\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)

Lại có :

\(2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\ge2a+2b+2c\)

\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+c\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\) (đúng)

Vậy \(\frac{a^3+b^3}{ab}+\frac{b^3+c^3}{bc}+\frac{c^3+a^3}{ca}\ge2a+2b+2c=2\left(a+b+c\right)\)

HeroZombie
13 tháng 8 2017 lúc 20:29

Ta có BĐT \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự cũng có 2 BĐT:

\(\frac{b^3+c^3}{bc}\ge b+c;\frac{c^3+a^3}{ca}\ge c+a\)

Cộng theo vế được ĐPCM

Khi a=b=c

HeroZombie
13 tháng 8 2017 lúc 20:30

Ta có BĐT \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự cũng có 2 BĐT:

\(\frac{b^3+c^3}{bc}\ge b+c;\frac{c^3+a^3}{ca}\ge c+a\)

Cộng theo vế được ĐPCM

Khi a=b=c

Thắng Nguyễn
Xem chi tiết
shitbo
Xem chi tiết
Tran Le Khanh Linh
22 tháng 5 2020 lúc 20:10

Áp dụng BĐT AM-GM ta được

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\sqrt{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\left(a+b+c\right)}\)

Như vậy, để kết thúc chứng minh ta cần chỉ ra rằng

\(\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\left(a+b+c\right)\ge3\left(a^2+b^2+c^2\right)\)

Thật vậy, áp dụng BĐT Cauchy-Schwartz ta có:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)

Công việc cuối cần chứng minh \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)

Hay \(\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)\ge2\left(a^2b+b^2c+c^2a\right)\)

Đây là một đánh giá đúng theo BĐT AM-GM do đó BĐT ban đầu được chứng minh

Khách vãng lai đã xóa
tth_new
4 tháng 8 2020 lúc 20:21

sos là ra ez.

Khách vãng lai đã xóa