Cho phân số :\(\frac{a}{b}\left(a,b>0\right)\)
CMR: \(\frac{a}{b}+\frac{b}{a}\ge2\)
Cho a,b,c phân biệt. CMR \(\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2\ge2\)
Cho a,b,c>0
CMR \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\ge2+\frac{2\left(a+b+c\right)}{\sqrt[3]{abc}}\)
MỌI NGƯỜI GIẢI NHANH GIÙM NHA
cho a,b,c > 0 thỏa mãn a + b + c = 6abc.
Cmr: \(\frac{bc}{a^3\left(c+2b\right)}+\frac{ac}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\ge2\)
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=6\)
\(P=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{xy+yz+zx}{3}=2\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{2}\)
cho a,b,c > 0 thỏa mãn a+b+c=6abc.
Cmr: \(\frac{bc}{a^3\left(c+2b\right)}+\frac{ca}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\ge2\)
\(a+b+c=6abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=6\)
\(P=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(xy+yz+zx\right)^2}{3\left(xy+yz+zx\right)}=\frac{xy+yz+zx}{3}=2\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{2}\) hay \(a=b=c=\frac{1}{\sqrt{2}}\)
Cho a,b khác 0. CMR \(\frac{a^2}{b^2}-\frac{b^2}{a^2}-1\ge2\left(\frac{a^2+b^2}{ab}\right)\)
Cho a,b,c>0 và abc=1 CMR \(\frac{a^4\left(b^2+c^2\right)}{b^3+2c^3}+\frac{b^4\left(a^2+c^2\right)}{c^3+2a^3}+\frac{c^4\left(a^2+b^2\right)}{a^3+2b^3}\ge2\)
Bạn tham khảo lời giải bài 4 link sau:
Cho a,b,c >0 . CMR : \(\frac{a^3+b^3}{ab}+\frac{b^3+c^3}{bc}+\frac{c^3+a^3}{ca}\ge2.\left(a+b+c\right)\)
Áp dụng BĐT Cauchy , có :
\(\frac{a^3+b^3}{ab}+\frac{b^3+c^3}{bc}+\frac{c^3+a^3}{ca}\ge\frac{2\sqrt{a^3.b^3}}{ab}+\frac{2\sqrt{b^3.c^3}}{bc}+\frac{2\sqrt{c^3.a^3}}{ca}\)
\(\Leftrightarrow...........\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)
Lại có :
\(2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\ge2a+2b+2c\)
\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+c\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\) (đúng)
Vậy \(\frac{a^3+b^3}{ab}+\frac{b^3+c^3}{bc}+\frac{c^3+a^3}{ca}\ge2a+2b+2c=2\left(a+b+c\right)\)
Ta có BĐT \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự cũng có 2 BĐT:
\(\frac{b^3+c^3}{bc}\ge b+c;\frac{c^3+a^3}{ca}\ge c+a\)
Cộng theo vế được ĐPCM
Khi a=b=c
Ta có BĐT \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự cũng có 2 BĐT:
\(\frac{b^3+c^3}{bc}\ge b+c;\frac{c^3+a^3}{ca}\ge c+a\)
Cộng theo vế được ĐPCM
Khi a=b=c
Cho a,b,c,d>0 thỏa abcd=1. CMR \(\frac{a^3}{b^2\left(c^2+d^2\right)}+\frac{b^3}{c^2\left(d^2+a^2\right)}+\frac{c^3}{d^2\left(a^2+b^2\right)}+\frac{d^3}{a^2\left(b^2+c^2\right)}\ge2\)
Cho a;b;c>0
CMR:\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\sqrt{3\left(a^2+b^2+c^2\right)}\)
Áp dụng BĐT AM-GM ta được
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\sqrt{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\left(a+b+c\right)}\)
Như vậy, để kết thúc chứng minh ta cần chỉ ra rằng
\(\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\left(a+b+c\right)\ge3\left(a^2+b^2+c^2\right)\)
Thật vậy, áp dụng BĐT Cauchy-Schwartz ta có:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
Công việc cuối cần chứng minh \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
Hay \(\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)\ge2\left(a^2b+b^2c+c^2a\right)\)
Đây là một đánh giá đúng theo BĐT AM-GM do đó BĐT ban đầu được chứng minh