Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gãy Cánh GST
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 20:37

Xét ΔABD vuông tại D và ΔCHD vuông tại D có

góc BAD=góc HCD

=>ΔABD đồng dạng vớiΔCHD

Mạnh Dũng
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 3 2023 lúc 21:58

a: góc CDH+góc CEH=180 độ

=>CDHE nội tiếp

góc AEB=góc ADB=90 độ

=>AEDB nội tiếp

b:

Gọi giao của CH với AB là K

=>CH vuông góc AB tại K

=>góc ABE=góc ACH=góc ECH(=90 độ-góc CAB)

Vũ Thị Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2023 lúc 0:35

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc BDH+góc BFH=180 độ

=>BDHF nội tiếp

b; góc ACK=1/2*sđ cung AK=90 độ

Xét ΔACK vuông tại C và ΔADB vuông tại D có

góc AKC=góc ABD

=>ΔACK đồng dạng với ΔADB

=>AC/AD=AK/AB

=>AC*AB=AD*AK

ramito1232@sinyago.com
Xem chi tiết
Lương Vũ Minh Hiếu
30 tháng 5 2022 lúc 14:10

mk lớp 5 

ko bt

Anh Nam
Xem chi tiết
Vũ Thị Hương
Xem chi tiết
Thanh Hoàng Thanh
29 tháng 3 2022 lúc 21:48

undefined

lương văn quynh
Xem chi tiết
Lê Bảo Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 23:13

Bài 10:

a) Xét ΔABE vuông tại E và ΔCBD vuông tại D có 

\(\widehat{DBC}\) chung

Do đó: ΔABE\(\sim\)ΔCBD(g-g)

b) Xét ΔHDA vuông tại D và ΔHEC vuông tại E có 

\(\widehat{AHD}=\widehat{CHE}\)(hai góc đối đỉnh)

Do đó: ΔHDA\(\sim\)ΔHEC(g-g)

Suy ra: \(\dfrac{HD}{HE}=\dfrac{HA}{HC}\)

hay \(HD\cdot HC=HE\cdot HA\)

Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 23:16

Bài 11: 

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có

\(\widehat{FAC}\) chung

Do đó: ΔABE\(\sim\)ΔACF(g-g)

b) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔFHB\(\sim\)ΔEHC(g-g)

Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)

hay \(HE\cdot HB=HF\cdot HC\)

c) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

Suy ra: \(\widehat{AEF}=\widehat{ABC}\)

Ngọc Phương Phạm Thị
Xem chi tiết
Trần Minh Hoàng
1 tháng 6 2021 lúc 19:03

b) \(\widehat{NAB}=\widehat{AFE}=\widehat{ACB}\) nên NA là tiếp tuyến của (O).

Do O, N nằm trên đường trung trực của AB nên A, B đối xứng với nhau qua ON.

Từ đó NB là tiếp tuyến của (O).

c) Do NA là tiếp tuyến của (O) nên \(\Delta NAL\sim\Delta NKA(g.g)\)

\(\Rightarrow\dfrac{NA}{NK}=\dfrac{AL}{KA}=\dfrac{NL}{NA}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\dfrac{NA}{NK}.\dfrac{NL}{NA}=\dfrac{NL}{NK}\).

Tương tự do NB là tiếp tuyến của (O) nên \(\left(\dfrac{BL}{KB}\right)^2=\dfrac{NL}{NK}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\left(\dfrac{BL}{KB}\right)^2\Rightarrow\dfrac{AL}{KA}=\dfrac{BL}{KB}\Rightarrow\dfrac{AL}{BL}=\dfrac{KA}{KB}=\dfrac{2R}{KB}\).

Từ đó \(\dfrac{BK.AL}{BL}=2R\) không đổi \(\).

Sửa lại đề là đường tròn (HDS) đi qua một điểm cố định.

Ta có \(\widehat{ASE}=\widehat{EAS}=\widehat{OCA}\) nên tứ giác OECS nội tiếp. Từ đó \(AO.AS=AE.AC=AH.AD\). Suy ra tứ giác OHDS nội tiếp nên đường tròn ngoại tiếp tam giác HDS đi qua O cố định