a: góc CDH+góc CEH=180 độ
=>CDHE nội tiếp
góc AEB=góc ADB=90 độ
=>AEDB nội tiếp
b:
Gọi giao của CH với AB là K
=>CH vuông góc AB tại K
=>góc ABE=góc ACH=góc ECH(=90 độ-góc CAB)
a: góc CDH+góc CEH=180 độ
=>CDHE nội tiếp
góc AEB=góc ADB=90 độ
=>AEDB nội tiếp
b:
Gọi giao của CH với AB là K
=>CH vuông góc AB tại K
=>góc ABE=góc ACH=góc ECH(=90 độ-góc CAB)
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O(AB<AC), có ba đường cao AD, BE, CF cắt nhau tại H ( D thuộc BC, E thuộc AC, F thuộc AB)
a) Chứng minh tứ giác BFEC và tứ giác BFHD là các tứ giác nội tiếp
b) Vẽ đường kính AK của (O). Chứng minh AB.AC=AD.AK
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O (AB<AC), có ba đường cao AD, BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB)
a) Chứng minh các tứ giác BFEC và tứ giác BFHD là các tứ giác nội tiếp
b) Vẽ đường kính AK của (O). Chứng minh AB.AC=AD.AK
Cho tam giác ABC có 3 góc ngọn. Hai đường cao của tam giác ABC là AD,BE cắt nhau tại H (D thuộc BC; E thuộc AC).
a) Chứng minh: CDHE là tứ giác nội tiếp một đường tròn.
b) Chứng minh: HA.HD = HB.HE.
c) Gọi điểm I là tâm đường tròn ngoại tiếp tứ giác CDHE. Chứng minh IE là tiếp tuyến của đường tròn đường kính AB.
Cho tam giác ABC có 3 góc ngọn. Hai đường cao của tam giác ABC là AD,BE cắt nhau tại H (D thuộc BC; E thuộc AC).
a) Chứng minh: CDHE là tứ giác nội tiếp một đường tròn.
b) Chứng minh: HA.HD = HB.HE.
c) Gọi điểm I là tâm đường tròn ngoại tiếp tứ giác CDHE. Chứng minh IE là tiếp tuyến của đường tròn đường kính AB.
cho tam abc (ab<ac) 2 đường cao ad và be cắt nhau tại h chứng minh a,b,d,e cùng thuộc một đường tròn ngoại tiếp tyws giác abde chứng minh c,d,h,e cùng thuộc 1 đường tròn N của đường tròn ngoại tiếp tứ giác cdhe
cho tam giác ABC (AB<AC) có ba góc nhọn nội tiếp đường tròn (o). các đường cao AD,BE của tam giác ABC cắt nhau tại H
a) c/m tứ giác ABDE nội tiếp
b) trong đường tròn (o) vẽ đường kính AK gọi N là giao điểm của AD vad BK chứng minh EM/DN = EH/DH
c) DE cắt MN tại I chứng minh IM=IN
Cho tam giác ABC nhọn (AB < AC), nội tiếp đường tròn (O), các đường cao AD,BE,CF cắt nhau tại H
a) Chứng minh rằng tứ giác CDHE, BCEF nội tiếp
b) Hai đường thẳng EF và BC cắt nhau tại M. Chứng minh MB.MC = ME.MF
c) Đường thẳng qua B song song với AC cắt AM, AH ần lượt tại I,K . Chứng minh HB là phân giác của IHK
Cho tam giác ABC vuông tại A (AB<AC).Đường tròn (O) đường kính AB cắt BC tại H .Tia phân giác góc HAC cắt BC tại E và cắt đường tròn (O) tại điểm thứ 2 lf D .Gọi F là giao điểm của AH và BD .chứng minh rằng
a)Tứ giác DEHF nội tiếp
b)Δ ABE cân
c)OD là tiếp tuyến của đường tòn ngoại tiếp tứ giác DEHF
Cho tam giác nhọn ABC(AB<AC) nội tiếp đường tròn (O;R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tai H.
a, Chứng minh rằng các tứ giác BFHD, BFEC nội tiếp đường tròn.
b,Chứng minh rằng FH là tia phân giác của góc DFE và H là tâm đường tròn nội tiếp tam giác DEF.
c,Gọi M là trung điểm của cạnh BC. Chứng minh rằng OM//AD và tứ giác DMEF nội tiếp.
d,Gọi N là giao điểm của AD và EF .Chứng minh
1/HN-1/HĐ=2/AH