a: góc AEB=góc ADB=90 độ
=>AEDB nội tiếp
b,c: M ở đâu vậy bạn?
a: góc AEB=góc ADB=90 độ
=>AEDB nội tiếp
b,c: M ở đâu vậy bạn?
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn ( O ). Ba đường cao AD,BE,CF cắt nhau tại H.
a) Chứng minh tứ giác ABDE là tứ giác nội tiếp. Xác định tâm S của đường tròn ngoại tiếp tứ giác ABDE.
b) Vẽ đường kính AK của ( O ). Chứng minh : AB×AC = AD×AK
c) Gọi I là trung điểm của HC. Chứng minh ST vuông góc ED.
d) Đường phân giác trong của góc BAC cắt BC tại M và cắt đường tròn ( O ) tại N ( N khác A ). Gọi I là tâm đường tròn nội tiếp tam giác ACM.
Gọi L là giao điểm của đường tròn ( O ) và CL. Chứng minh : N,O,L thẳng hàng.
e) Chứng minh ANKL là hình chữ nhật.
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O(AB<AC), có ba đường cao AD, BE, CF cắt nhau tại H ( D thuộc BC, E thuộc AC, F thuộc AB)
a) Chứng minh tứ giác BFEC và tứ giác BFHD là các tứ giác nội tiếp
b) Vẽ đường kính AK của (O). Chứng minh AB.AC=AD.AK
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn ( O ). Ba đường cao AD,BE,CF cắt nhau tại H. a) Chứng minh tứ giác AFHE là tứ giác nội tiếp. b) Vẽ đường kính AK của ( O ). Chứng minh : AB×AC = AD×AK
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O (AB<AC), có ba đường cao AD, BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB)
a) Chứng minh các tứ giác BFEC và tứ giác BFHD là các tứ giác nội tiếp
b) Vẽ đường kính AK của (O). Chứng minh AB.AC=AD.AK
Cho tam giác ABC nhọn( AB < AC) nội tiếp đường tròn(0;R) . Các đường cao AD , BE của tam giác ABC cắt nhau tại H .Vẽ đường kính AF của đường tròn ( O) .Gọi M là giao điểm của AD và đường tròn (O) (M khác A ) a )chứng minh rằng tứ giác BHCF là hình bình hành b ) Chứng minh rằng BC là đường trung trực của đoạn thẳng HM c) tứ giác BCFM m là hình gì? vì sao? d) Gọi G là trọng tâm của tam giác ABC. Chứng minh rằng H,G,O thẳng hàng và HG =2GO
Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC.
1. Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn.
2. Vẽ đường kính AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau.
3. Chứng minh rằng OC vuông góc với DE.
Cho tam giác ABC có ba cạnh góc nhọn, nội tiếp đường tròn (O). Vẽ các đường cao BE, CF của tam giác ABC. Gọi H là giao điểm của BE và CF. Kẻ đường kính BK của đường tròn (O)
a)Chứng monh tứ giác BCEF nội tiếp đường tròn.
b)Chứng minh tứ giác AHCK là hình bình hành.
c)Đường tròn đường kính AC cắt BE tại M, đường tròn đường kính AB cắt CF tại N. Chứng minh AM=AN.
MỌI NGƯỜI GIÚP MÌNH GIẢI CÂU b, c dùm đi ạ
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O). Vẽ ba đường cao AD;BE và CF cắt nhau tại H.
a) Chứng minh tứ giác AFHE và tứ giác BFEC là các tứ giác nội tiếp đường tròn
b) Đường thẳng EF cắt BC tại I. Chứng minh IE.IF=IB.IC
c) AI cắt đường tròn (O) tại K. Gọi M là trung điểm BC. Chứng minh ba điểm K,H,M thẳng hàng