Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lẩu Truyện
Xem chi tiết
Phạm Đình Tuấn Anh
30 tháng 5 2021 lúc 9:22

x_<2--> x+1/2_<5/2 mà -|x-2/3|_<0 nên Max N = 5/2 khi và chỉ khi x=2

Khách vãng lai đã xóa
Nguyễn Hải Minh
30 tháng 5 2021 lúc 9:31

\(-\left|x-\frac{2}{3}\right|\le0\Rightarrow\frac{1}{2}-\left|x-\frac{2}{3}\right|\le\frac{1}{2}\)

\(\Rightarrow x+\frac{1}{2}-\left|x-\frac{2}{3}\right|\le\frac{1}{2}+x\le\frac{1}{2}+2=\frac{5}{2}\)

Dấu "=" xảy ra <=> x=2/3

Vậy MaxN=5/2 <=>x=2/3

Khách vãng lai đã xóa
Nguyễn Hải Minh
30 tháng 5 2021 lúc 9:43

Để N đạt GTLN <=> x lớn nhất hoặc |x - 2/3| nhỏ nhất

\(\Leftrightarrow\orbr{\begin{cases}x=2\\\left|x-\frac{2}{3}\right|=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{2}{3}\end{cases}}\)

Suy ra MaxN=\(x+\frac{1}{2}-\left|x-\frac{2}{3}\right|=2+\frac{1}{2}-\left|2-\frac{2}{3}\right|=\frac{7}{6}\)

Vậy \(MaxN=\frac{7}{6}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)

Phần dưới mình nhầm nha :v

Khách vãng lai đã xóa
Nguyễn Ngọc Lan Thy
Xem chi tiết
nam do
Xem chi tiết
tthnew
16 tháng 10 2019 lúc 8:34

Đặt \(a=x-y;b=y-z\) thì \(2\ge a,b\ge-2\) và a, b khác 0; \(a\ne-b\)( vì nếu a = -b thì a + b = 0 hay x -z = 0 => z - x = 0 (vô lí) )

Xét: \(2\ge a,b>0\) thì \(\frac{9}{\left(a+b\right)^2}\ge\frac{9}{\left(2+2\right)^2}=\frac{9}{16}\) vì khi đó a + b >0 nên (a+b)2 \(\le\left(2+2\right)^2=16\))

Xét \(-2\le a,b< 0\) thì a + b < 0 suy ra \(\left(a+b\right)^2< \left(-2+-2\right)^2=16\)

Từ 2 trường hợp trên ta suy ra \(\frac{9}{\left(a+b\right)^2}\ge\frac{9}{16}\).

Ta có: \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}\ge\frac{2}{ab}+\frac{1}{\left(a+b\right)^2}\ge\frac{8}{\left(a+b\right)^2}+\frac{1}{\left(a+b\right)^2}=\frac{9}{\left(a+b\right)^2}\ge\frac{9}{16}\)

Vậy...

P/s: Em ko chắc. @Nguyễn Việt Lâm: Em làm thế này có đúng ko ạ? Em ko chắc chỗ xét 2 th ấy, có giải thích quá....:((

Lê Minh Đức
Xem chi tiết
alibaba nguyễn
16 tháng 5 2017 lúc 17:50

Đặt: y + z = a thì ta có

\(x\le2a\)

Từ đề bài thì ta có thể suy ra

\(A\le\frac{2x}{a^2}-\frac{1}{\left(x+a\right)^3}\)

\(\le\frac{4}{a}-\frac{1}{27a^3}=\frac{108a^2-1}{27a^3}\)

 \(=16-\frac{\left(6a-1\right)^2\left(12a+1\right)}{27a^3}\le16\)

 Vậy GTLN là \(A=16\). Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{1}{3}\\y=z=\frac{1}{12}\end{cases}}\) 

Lê Minh Đức
16 tháng 5 2017 lúc 20:17

Làm sao để tách được bởi vì làm sao dự đoán dượcđiểm rơi?

nguyen minh hoang
26 tháng 9 2019 lúc 20:36

cái cục cứt

Thảo Nguyên Xanh
Xem chi tiết
alibaba nguyễn
1 tháng 8 2017 lúc 8:40

Ta có:

\(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{x}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)

\(\Leftrightarrow\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{x}+\frac{z}{x}+\frac{z}{y}=-2\)

\(\Leftrightarrow x^2z+x^2y+y^2x+y^2z+z^2x+z^2y+2xyz=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=-y\\y=-z\\z=-x\end{cases}}\)

Với \(x=-y\)

\(\Rightarrow x^3+y^3+z^3=1\)

\(\Rightarrow z=1\)

\(\Rightarrow P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{-x}+\frac{1}{1}=1\)

Tương tự cho các trường hợp còn lại.

Cáo Nô
Xem chi tiết
ngonhuminh
6 tháng 2 2017 lúc 13:44

1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)

\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm 

2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)

tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1

3) kiểm tra lại xem đề đã chuẩn chưa

Hoàng Quốc Tuấn
Xem chi tiết
Cường Nguyễn
Xem chi tiết
MInemy Nguyễn
Xem chi tiết