cho a/b =b/c =c/a và a+b+c # 0.tính a3b2c1930/a1935.
câu 1:cho 3 đường thẳng a,b,c phân biệt. Biết a//b và a//c,suy ra;
a, b//c b, b⊥c c, a⊥b
câu 2; cho 3 đường thẳng a,b,c phân biệt. Biết a⊥c và b⊥c suy ra:
a, a và b cắt nhau b, a⊥b c, a//b
1)Cho 1/c=1/2(1/a + 1/b) với a,b,c khác 0 và b khác c.CMR: a/b=a-c/c-b
2)Cho 4 số dương a,b,c,d sao cho b=a+c/2 và c=2bd/b+d.CMR:a/b=c/d
3)Cho a,b,c là các số nguyên dương.CMR:M=a/a+b + b/b+c + c/c+a
Super Man mà lại còn phải lên đây để hỏi bài à?
1)Cho 1/c=1/2(1/a + 1/b) với a,b,c khác 0 và b khác c.CMR: a/b=a-c/c-b
2)Cho 4 số dương a,b,c,d sao cho b=a+c/2 và c=2bd/b+d.CMR:a/b=c/d
3)Cho a,b,c là các số nguyên dương.CMR:M=a/a+b + b/b+c + c/c+a
1)Cho 1/c=1/2(1/a + 1/b) với a,b,c khác 0 và b khác c.CMR: a/b=a-c/c-b
2)Cho 4 số dương a,b,c,d sao cho b=a+c/2 và c=2bd/b+d.CMR:a/b=c/d
3)Cho a,b,c là các số nguyên dương.CMR:M=a/a+b + b/b+c + c/c+a
a)Cho a+b+c=1 và 1/a+1/b+1/c =0.Tính a^2+b^2+c^2
b)Cho a+b+c=2014 và 1/a+b + 1/a+c + 1/b+c=1/2014.Tính S=a/b+c + b/a+c + c/a+b
\(a,\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0.abc=0\)
Mà \(a+b+c=1=>\left(a+b+c\right)^2=1=>a^2+b^2+c^2+2ab+2bc+2ac=1\)
\(=>a^2+b^2+c^2+2\left(ab+bc+ac\right)=1=>a^2+b^2+c^2=1-0=1\) (vì ab+bc+ac=0)
\(b,S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)-3\)
\(=2014.\frac{1}{2014}-3=1-3=-2\)
Vậy.....................
1)Cho 1/c=1/2(1/a + 1/b) với a,b,c khác 0 và b khác c.CMR: a/b=a-c/c-b
2)Cho 4 số dương a,b,c,d sao cho b=a+c/2 và c=2bd/b+d.CMR:a/b=c/d
3)Cho a,b,c là các số nguyên dương.CMR:M=a/a+b + b/b+c + c/c+a
Ai giúp mình với cảm ơn nhiều
1. Câu hỏi của Nguyễn Thị Hồng Nhung - Toán lớp 7 - Học toán với OnlineMath
1)
Ta có :
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{1}{c}.\frac{2}{1}=\frac{\left(a+b\right)}{ab}\)
\(\Leftrightarrow\frac{2}{c}=\frac{\left(a+b\right)}{ab}\)
\(\Leftrightarrow2ab=ac+bc\) (1)
Lại có :
\(\frac{a}{b}=\frac{a-c}{c-b}\)
\(\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Leftrightarrow ac-ab=ab-bc\)
\(\Leftrightarrow2ab=ac+bc\) (2)
Từ (1) và (2) :
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)
cho a, b, c>0 và b+c-a/a=c-b+a/b=a+b-c/c
Cho A = (a – b) – (c – a) + (- a + b + c)
B = - (b – c) + (b – c + a)
a) Thu gọn A và B
b) So sánh A và B
giúp mik vs ah
\(A=\left(a-b\right)-\left(c-a\right)+\left(-a+b+c\right)\)
\(A=a-b-c+a-a+b+c=a\left(1\right)\)
\(B=-\left(b-c\right)+\left(b-c+a\right)\)
\(B=-b+c+b-c+a=a\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow A=B=a\)
Cho a # +b và a(a+b)(a+c)=b(b+c)(b+a). Chứng minh rằng a+b+c=0Cho a # +b và a(a+b)(a+c)=b(b+c)(b+a). Chứng minh rằng a+b+c=0
cho a b c khác 0 và a+b+c=0 tính Q= (a/b-c + b/c-a + c/a-b)(b-c/a + c-a/b + a-b/c)