cho A=6n+7/2n+1 cmr A là p số tối giản
CMR 2n+1/6n+1 là phân số tối giản
giả sử 2n+1/6n+1 là phân số chưa tối giản thì 2n+1 và 6n+1 còn chia hết cho d (d khác 1)
=>(2n+1)-(6n+1) chia hết cho d
6n+3-6n-1 chia hết cho d
2 chia hết cho d
=>d thuộc Ư(2)=1;2
mà 2n+1 là số lẻ nên ko có ước 2
=>d=1
mà d khác 1 nên ko có trường hợp trên
=>phân số 2n+1/6n+1 chưa tối giản
CMR các phân số sau tối giản với mọi n ϵ Z:
a.n+3/2n+7
b.4n+6/6n+7
Lời giải:
a. Gọi $d$ là ƯCLN $(n+3, 2n+7)$
$\Rightarrow n+3\vdots d$ và $2n+7\vdots d$
$\Rightarrow 2n+7-2(n+3)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$
Vậy $n+3, 2n+7$ nguyên tố cùng nhau, nên $\frac{n+3}{2n+7}$ tối giản.
b.
Gọi $d$ là ƯCLN $(4n+6, 6n+7)$
$\Rightarrow 4n+6\vdots d; 6n+7\vdots d$
$\Rightarrow 3(4n+6)-2(6n+7)\vdots d$
$\Rightarrow 4\vdots d$
Mặt khác, vì $6n+7\vdots d$ mà $6n+7$ lẻ nên $d$ lẻ.
$\Rightarrow d=1$
$\Rightarrow \frac{4n+6}{6n+7}$ tối giản.
CMR với mọi n\(\in\)N*, các phân số sau là các phân số tối giản
a)\(\frac{2n+5}{3n+7}\)
b)\(\frac{6n-14}{2n-5}\)
Gọi \(ƯCLN\left(2n+5;3n+7\right)\) là \(d\)
\(\Rightarrow\)\(\left(2n+5\right)⋮d\) và \(\left(3n+7\right)⋮d\)
\(\Rightarrow\)\(3\left(2n+5\right)⋮d\) và \(2\left(3n+7\right)⋮d\)
\(\Rightarrow\)\(\left(6n+15\right)⋮d\) và \(\left(6n+14\right)⋮d\)
\(\Rightarrow\)\(\left(6n+15\right)-\left(6n+14\right)⋮d\)
\(\Rightarrow\)\(\left(6n-6n+15-14\right)⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(2n+5;3n+7\right)=\left\{1;-1\right\}\)
Vậy \(\frac{2n+5}{3n+7}\) là phân số tối giản
a Gọi ước chung của 2n+5 và 3n+7 là n
2n+5 ⋮ x=>6n+15⋮x
3n+7 ⋮ x =>6n+14 ⋮x
=>1 chia hết x=> x thuộc ước của 1
Vậy phân số đó tối giản
b 6n-14 chia hết x
2n-5 chia hết x=>6n-15 chia hết x
=>1 chia hết x=> x thuộc ước của 1
Vậy phân số đó tối giản
a)
Gọi ước chung lớn nhất của 2n+5 và 3n+7 là d
=> 2n+5 chia hết cho d và 3n+7 chia hết
=> 3n+7 - 2n-5 chia hết cho d => n+2 chia hết cho d
=> 2n+5 - 2*(n+2) chia hết cho d => 1 chia hết cho d
=> d=1
=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
=> 2n+5/3n+7 là phân số tối giản ( ĐPCM)
b)
Gọi ước chung lớn nhất của 6n-14 và 2n-5 là d
=> 2n-5 chia hết cho d và 6n-14 chia hết
=> 6n-14 - 3*(2n-5) chia hết cho d
=> 6n-14-6n+15
=> 1 chia hết cho d
=> d=1
=> 6n-14 và 2n-5 là 2 số nguyên tố cùng nhau
=> 6n-14/2n-5 là phân số tối giản ( ĐPCM)
Tích cho mk nhoa !!!! ~~
cho A=6n+2/2n+1
với mọi số tư nhiên n,chứng tỏ rằng A là phân số tối giản
gọi d là ƯCLN của 6n+2 và 2n+1
=> 6n+2 chia hết cho d và 2n+1 chia hết cho d
=>6n+2 chia hết cho d và 3(2n+1) = 6n+3 chia hết cho d
=>(6n+3) - (6n+2) chia hết cho d
=> 6n+ 3 - 6n -2 chia hết cho d=>1 chia hết cho d => d = 1
=> ƯCLN(6n+2;2n+1) = 1=>6n+2/2n+1 là phân số tối giản => đpcm
Cho phân số A = \(\frac{2n+1}{6n+5}\)
Chứng minh A là phân số tối giản
Đặt d là ước chung lớn nhất của 2n+1 và 6n+5
Ta có \(2n+1⋮d\Rightarrow3.\left(2n+1\right)⋮d\Rightarrow6n+3\)
Mặt khác \(6n+5⋮d\)
Do đó \(6n+5-6n-3⋮d\Rightarrow2⋮d\Rightarrow d=\left\{1;2\right\}\)
Mặt khác 6n+5 là số lẻ nên d = 1
Khi đó 6n + 5 và 2n +1 là hai số nguyên tố cùng nhau hay phân số A tối giản
kho the ai lam dc
cho A = 2n+90/6n+70
hỏi A có phải là phân số tối giản
Đề của người ta là: \(\frac{2n+90}{6n+70}\)đó thưa anh
cho A=6n+7/2n+1
a, tìm số nguyên n để A có giá trị nguyên
b, tin số nguyên n để A đạt giá trị nhỏ nhất
c, chứng tỏ rằng A là phân số tối giản
c)
goi D LA U (6N+7;2N+1)
=>6N+7 5CHIAHET CHO D=>2N+1 CHIA HET CHO D
=>1(6N+7) CHIA HET CHO D
=>3(2N+6) CHIA HETS CHO D
=>[6N+7)-(6N+6)] CHIA HET CHO D
=>D CHIA HET CHO D
=>D=1
=>6N+7/2N+1 LA P/S TOI GIAN
Cho A= \(\frac{6n+7}{2n+1}\)(n\(\in\)Z)
Chứng tỏ rằng: A là phân số tối giản
Gọi ƯCLN 6n+7 và 2n+1 là d
6n+7 chia hết d
2n+1 chia hết d suy ra 6n+3 chia hết d
suy ra (6n+7)-(6n+3)=4 chia hết d
suy ra d bằng 1 ; 4. mà 2n+1 là số lẻ nên d=1 . nên p/s dố tối giản
goi d LA U (6N+7/2N+1)
=>6N+7 CHIA HET CHO D=> 2(6N+14) CHIA HET CHO D
=>2N+1 CHIA HET CHO D=>6(2N+6) ................
=>1 CHIA HET CHO D
=>D=1
=>\(\frac{6N+7}{2N+1}\) LA P/S TOI GIAN
K NHR
1, Mẫu của 1 phân số lớn hơn tử 3507 đơn vị. Sau khi rút gọn được phân số 5/12. Tìm phân số khi chưa rút gọn.
2, Tìm n thuộc Z để A= 2n+8/n+1 có giá trị là số nguyên.
3, CMR các phân số sau là phân số tối giản:
a, 12n+1/30n+2
b, 2n+2/6n+7
Nhanh giùm mình nhé, mình like nhiệt tình!