Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Khanh Linh
Xem chi tiết
Phạm Thị Nhập
Xem chi tiết
Hà Lê
22 tháng 7 2019 lúc 13:44

sao ko ai trả lời vậy

Xuan Trinh
Xem chi tiết
Huy Hoang
24 tháng 6 2020 lúc 16:19

Ta có : x + y = 1

=> x = 1 - y

     y = 1 - x , 1 - ( x + y ) = 0

Khi đó : \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{1-y}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-\left(x^2+x+1\right)+\left(y^2+y+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-x^2-x-1+y^2+y+1}{x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-\left(x^2-y^2\right)-\left(x-y\right)}{x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+\left(x+y\right)+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{\left(x-y\right)\left(-x-y-1\right)}{x^2y^2+xy.1+x^2+y^2+xy+1+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{\left(x-y\right)\left(-x-y-1\right)}{x^2y^2+\left(x+y\right)^2+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-\left(x-y-1\right)\left(x+y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-\left(x-y-1\right)\left(x+y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-\left(x-y-1\right)\left(x+y\right)+2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{\left(x-y\right)\left[-\left(x+y+1\right)+2\right]}{x^2y^2+3}\)

\(=\frac{\left(x-y\right)\left(1-x-y\right)}{x^2y^2+3}\)

\(=\frac{\left(x-y\right)\left[1-\left(x+4\right)\right]}{x^2y^2+3}\)

\(=\frac{\left(x-y\right).0}{x^2y^2+3}=0\)

Vậy : \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\left(đpcm\right)\)

Khách vãng lai đã xóa
Dương Thị Anh
Xem chi tiết
Akai Haruma
28 tháng 1 2023 lúc 12:44

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết đề như trên khó theo dõi quá.

Đồ Ngốc
Xem chi tiết
Quang
13 tháng 11 2016 lúc 1:05

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right) \Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)(1)

Đặt \(t=\frac{x}{y}+\frac{y}{x}\), (1) trở thành \(t^2-3t+2\ge0\)(2)

(2) đúng khi \(t\le1\)hoặc \(t\ge2\), chú ý rằng theo bất đẳng thức AM - GM, ta có:

\(t=\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{xy}{xy}}=2\)với x,y > 0 

Do đó (2) đúng, suy ra (1) đúng ( đpcm ).

alibaba nguyễn
12 tháng 11 2016 lúc 22:33

Đề đúng không thế bạn. 3 hay là 2 thế

Phạm Hà Linh
Xem chi tiết
Thảo Vi
Xem chi tiết
Etermintrude💫
8 tháng 3 2021 lúc 20:42

undefinedundefinedundefined

Quỳnh Hương
Xem chi tiết
Quỳnh Hương
9 tháng 10 2016 lúc 20:22

xin lỗi, đề bài là y^2 nhá, mình quên

Thơ Nụ =))
Xem chi tiết

Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:

\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)