Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lukaku bình dương
Xem chi tiết
HT.Phong (9A5)
2 tháng 8 2023 lúc 14:18

\(S=5+5^2+5^3+5^4+...+5^{2022}\)

\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+...+\left(5^{2021}+5^{2022}\right)\)

\(S=\left(5+5^2\right)+5^2\cdot\left(5+5^2\right)+5^4\cdot\left(5+5^2\right)+...+5^{2020}\cdot\left(5+5^2\right)\)

\(S=\left(5+5^2\right)\left(1+5^2+5^4+...+5^{2020}\right)\)

\(S=30\left(1+5^2+5^4+...+5^{2020}\right)\)

Vậy S chia hết cho 30

HT.Phong (9A5)
2 tháng 8 2023 lúc 14:13

S không thể chia hết cho 13 nhé

Nguyễn Lê Phước Thịnh
2 tháng 8 2023 lúc 14:16

S=(5+5^2)+5^2(5+5^2)+...+5^2020(5+5^2)

=30*(1+5^2+...+5^2020) chia hết cho 30

Dương Phương Thuỳ
Xem chi tiết
Lương Thị Vân Anh
23 tháng 4 2023 lúc 20:20

Ta có S = 1 + 3 + 32 + 33 + ... + 357

3S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 356 + 357 )

= 1( 1 + 3 ) + 32( 1 + 3 ) + ... + 356( 1 + 3 )

= 1 . 4 + 32 . 4 + ... + 356 . 4

= 4( 1 + 32 + ... + 356 ) ⋮ 4

Vậy A ⋮ 4

Lại có S = 1 + 3 + 32 + 33 + ... + 357 

S - 1 = 3 + 32 + 33 + ... + 357 

         = ( 3 + 32 + 33 ) + ( 34 + 3+ 36 ) + ... + ( 355 + 356 + 357 )

         = 3( 1 + 3 + 32 ) + 34( 1 + 3 + 32 ) + ... + 355( 1 + 3 + 32 ) 

         = 3 . 13 + 34 . 13 + ... + 355 . 13

         = 13( 3 + 34 + ... + 355 ) ⋮ 13

Vậy ( S - 1 ) ⋮ 13 ⇒ S không chia hết cho 13

Ta có S = 1 + 3 + 32 + 33 + ... + 357

3S = 3 + 32 + 33 + 34 + ... + 358

3S - S = ( 3 + 32 + 33 + 34 + ... + 356 ) - ( 1 + 3 + 32 + 33 + ... + 357 )

2S = 358 - 1 = 356 . 9 - 1 = ( 34 )14 . 9 - 1 = 8114 . 9 - 1 = ( ...9 ) - 1 = ( ...8 )

S = ( ...8 ) : 2 = ( ...4 )

Vậy chữ số tận cùng của S là 4

 
Dương Phương Thuỳ
23 tháng 4 2023 lúc 20:06

mn giúp mình với

Dương Phương Thuỳ
24 tháng 4 2023 lúc 5:39

giúp mình với huhu

Lê thanh hải
Xem chi tiết
Kiều Vũ Linh
27 tháng 12 2023 lúc 15:23

Số số hạng của S:

20 - 0 + 1 = 21 (số)

Do 21 ⋮ 3 nên ta có thể nhóm các số hạng của S thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:

S = (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3¹⁸ + 3¹⁹ + 3²⁰)

= 13 + 3³.(1 + 3 + 3²) + ... + 3¹⁸.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3¹⁸.13

= 13.(1 + 3³ + ... + 3¹⁸) ⋮ 13

Vậy S ⋮ 13

Nguyễn Ngọc Minh Châu
27 tháng 12 2023 lúc 15:38

S= 1+3+32+33+34+...+319+320

S= (1+3+32) + (33+34+35) + ... + (318+319+320)

S= 13.1+ 32.(1+3+32) + 317.(1+3+32)

S= 13.1+32.13+317.13

S= 13.(1+32+317\(⋮\) 13

S\(⋮\) 13

Vậy S\(⋮\) 13

thành đạt
Xem chi tiết
thành đạt
1 tháng 1 2022 lúc 16:47

giúp tôi với

 

Nguyễn Hoàng Minh
1 tháng 1 2022 lúc 16:50

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\\ S=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\\ S=\left(1+3+3^2\right)\left(3+3^4+3^7\right)=13\left(3+3^4+3^7\right)⋮13\)

Kudo Shinichi
1 tháng 1 2022 lúc 16:51

\(S=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\\ S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\\ S=3\left(1+3+9\right)+3^4\left(1+3+9\right)+3^7\left(1+3+9\right)\\ S=3.13+3^4.13+3^7.13\\ S=13\left(3+3^4+3^7\right)⋮13\)

lonnhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 21:02

\(S=3+3^2+3^3+3^4+...+3^{2021}\)

\(=3+9+\left(3^3+3^4+3^5\right)+...+\left(3^{2019}+3^{2020}+3^{2021}\right)\)

\(=12+3^3\left(1+3+3^2\right)+...+3^{2019}\left(1+3+3^2\right)\)

\(=12+13\left(3^3+3^6+...+3^{2019}\right)\)

=>S không chia hết cho 13

Yuki_Kali_Ruby
Xem chi tiết
Công chúa sinh đôi
Xem chi tiết
super saiyan vegeto
2 tháng 11 2016 lúc 12:37

s= 3+32+33+ ...+ 32016

= ( 3+32+33) + .....+( 32014+ 32015+32016)

= 3( 1+3+32)+.....+ 32014.( 1+3+32)

= (3+....+32014)(1+3+32)

= (3+....+32014)13 chia hết cho 13

câu còn lại nhốm 4 số nha

vì 3a+2b chia hết cho 17 nên (3a+2b)10 chia hết cho 17

ta có 10( 3a+2b) - 3( 10a+b) = 30a + 20b-30a-3b=17b chia hết cho 17 

=> 3( 10a+b) chia hết cho 17

=> 10a+b chia hết cho 17

Hồng Nguyễn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 0:26

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

thtyygffgy
22 tháng 2 2023 lúc 20:06

tự làm nha

 

Hồng Nguyễn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 0:22

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)