So sánh
a) 99^20 và 9999^10
b) 3^500 và 5^300
So sánh các cặp số sau:
a) 2^24 và 3^16
b) 5^300 và 3^500
c) 99^20 và 9999^10
d) 2^30+3^34+4^30 và 3×24^10
a, 2^24 > 3^16
b, 5^300>3 ^500
c,99^20 > 9999^10
d, 2^30 +3^44 +4^30 < 3x24^10
so sánh(hi vọng mọi người ko phiền khi mình hỏi nhiều)
a)2^300 và 3^200
b)99^20 và 9999^10
c)3^500 và 7^300
d)11^1979 và 37^1320
e)8^5 và 3*4^7
f)10^10 và 48*50^5
g)202^303 và 303^202
h)1990^40+1990^9 và 1991^10
Câu a:
2\(^{300}\) và 3\(^{200}\)
2\(^{300}\) = (2\(^3\))\(^{100}\) = 8\(^{100}\)
3\(^{200}\) = (3\(^2\))\(^{100}\) = 9\(^{100}\)
8\(^{100}\) < 9\(^{100}\)
Vậy 2\(^{300}\) < 3\(^{200}\)
câu b:
99\(^{20}\) và 9999\(^{10}\)
99\(^{20}\) = (99\(^2\))\(^{10}\) = 9801\(^{10}\)
9999\(^{10}\) > 9801\(^{10}\)
Vậy 99\(^{20}\) < 9999\(^{10}\)
Câu c:
3\(^{500}\) và \(7^{300}\)
3\(^{500}\) = (3\(^5\))\(^{100}\) = 243\(^{100}\)
7\(^{300}\) = (7\(^3\))\(^{100}\) = 343\(^{100}\)
243\(^{100}\) < 343\(^{100}\)
Vậy 3\(^{500}\) < 7\(^{300}\)
Câu d:
11\(^{1979}\) và 37\(^{1320}\)
11\(^{1979}\) < 11\(^{1980}\) = (11\(^3\))\(^{660}\) = 1331\(^{660}\)
37\(^{1320}\) = (37\(^2\))\(^{660}\) = 1369\(^{660}\)
1331\(^{660}<1369^{660}\)
Vậy 11\(^{1979}\) < 37\(^{1320}\)
Câu e:
so sánh : 8\(^5\) và 3.4\(^7\)
8\(^5\) = (2\(^3\) )\(^5\) = 2\(^{15}\) = 2.(2\(^2\))\(^7\)= 2.4\(^7\)
3.4\(^7\) > 2.4\(^7\)
Vậy: 8\(^5\) < 3.4\(^7\)
Câu f; So sánh:
10\(^{10}\) và 48.50\(^5\)
48.50\(^5\) = (2\(^4\).3).50\(^5\) > (2\(^4.2\)).50\(^5\) = 2\(^5\).50\(^5\) = (2.50)\(^5\)=100\(^5\) =10\(^{10}\)
Vậy 10\(^{10}\) < 48.50\(^5\)
so sánh :
1/2^1050 và 5^450
2/5^2n và 2^2n
3/3^500 và 7^300
4/8^5 và 3.4^7
5/99^20 và 9999^10
ai làm nhanh nhất dự tất cả 5 ý trên mình sẽ tích cho ^o^
1/2^1050 < 5^450
2/5^2n < 2^2n
3/3^500 < 7^300
4/8^5 < 3.4^7
5/99^20 < 9999^10
k mk nha
so sánh
99 mũ 20 và 9999 mũ 10
3 mũ 500 và 7 mũ 300
8 mũ 5 và 3.4 mũ 7
11 mũ 1979 và 37 mũ 1320
10 mũ 10 và 48.50 mũ 5
202 mũ 303 và 303 mũ 202
1990 mũ 10 + 1990 mũ 9 và 1991 mũ 10
giải ra nha!!!
#thanks m.n#
Câu 1.9920và 999910
=(992)10=980110
Vậy 980110<999910 suy ra 9920<999910
Câu 2. 3500và 7300
3500=(35)100=243100
7300=(73)100=343100
Vậy 243100<343100 => 3500<7300
so sánh
a, 2^91 và 5^35
b,3^400 và 4^300
c,2^332 và 3^223
d,10^20 và 20^10
e,99^20 và 9999^10
\(2^{91}=\left(2^{13}\right)^7=73728^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\) nhỏ hơn \(73728^7\)
\(\Rightarrow2^{91}\) lớn hơn \(5^{35}\)
\(b,3^{400}=\left(3^4\right)^{100}=81^{100}\\ 4^{300}=\left(4^3\right)^{100}=64^{100}\\ Vì:81^{100}>64^{100}\left(Do:81>64\right)\\ \Rightarrow3^{400}>4^{300}\)
\(d,10^{20}=\left(10^2\right)^{10}=100^{10}\\ Vì:100^{10}>20^{10}\left(Do:100>20\right)\\ \Rightarrow10^{20}>20^{10}\)
So sánh
a,\(2^{300}\) và \(3^{200}\)
b,\(8^5\) và \(6^6\)
c, \(3^{450}\) và \(5^{300}\)
\(a,2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\) nên \(2^{300}< 3^{200}\)
\(b,8^5=32768\)
\(6^6=46656\)
Vì \(32768< 46656\) nên \(8^5< 6^6\)
\(c,3^{450}=\left(3^3\right)^{150}=27^{150}\)
\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
Vì \(27^{150}>25^{150}\) nên \(3^{450}>5^{300}\)
#Ayumu
So sánh các số sau
d,\(2^{300}\) và \(303^{202}\) e, \(99^{20}\) và \(9999^{10}\) f,\(11^{1979}\) và \(37^{1320}\)
g, \(10^{10}\)và\(48.50^5\) h,\(1990^{10}\) +và \(1991^{10}\)
f: 11^1979<11^1980=1331^660
37^1320=(37^2)^660=1369^660
1331<1369
=>1331^660<1369^660
=>11^1980<37^1320
=>11^1979<37^1320
g: 10^10=2^10*5^10
48*50^5=2^4*3*2^5*5^10=2^9*3*5^10
2^10<2^9*3
=>2^10*5^10<2^9*3*5^10
=>10^10<48*50^5
So sánh:
1) 101992+1/101991+1 và 101993+1/101992+1
2) 3500 và 7300
3) 9920 và 999910
4) 202303 và 303202
5) 5299 và 3501
So sánh
a)(1/2)300 và (1/3)200
b)(1/3)75 và (1/5)50
a, Ta có: \(\left(\dfrac{1}{2}\right)^{300}=\left[\left(\dfrac{1}{2}\right)^3\right]^{100}=\left(\dfrac{1}{8}\right)^{100}\)
\(\left(\dfrac{1}{3}\right)^{200}=\left[\left(\dfrac{1}{3}\right)^2\right]^{100}=\left(\dfrac{1}{9}\right)^{100}\)
=> \(\left(\dfrac{1}{8}\right)^{100}>\left(\dfrac{1}{9}\right)^{100}\)=> \(\left(\dfrac{1}{2}\right)^{300}>\left(\dfrac{1}{3}\right)^{200}\)
b, Ta có: \(\left(\dfrac{1}{3}\right)^{75}=\left[\left(\dfrac{1}{3}\right)^3\right]^{25}=\left(\dfrac{1}{27}\right)^{25}\)
\(\left(\dfrac{1}{5}\right)^{50}=\left[\left(\dfrac{1}{5}\right)^2\right]^{25}\)\(=\left(\dfrac{1}{25}\right)^{25}\)
Do \(\left(\dfrac{1}{27}\right)^{25}< \left(\dfrac{1}{25}\right)^{25}=>\left(\dfrac{1}{3}\right)^{75}< \left(\dfrac{1}{5}\right)^{50}\)
Kiểm tra lại bài nhé, học tốt!!