Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An Bùi
Xem chi tiết
Nguyễn Yến Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2023 lúc 19:41

a: Gọi d=ƯCLN(2n+7;n+3)

=>2n+7-2n-6 chia hết cho d

=>1 chia hết cho d

=>d=1

=>phân số tối giản

b: Gọi d=ƯCLN(5n+7;2n+3)

=>10n+14-10n-15 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

HLTx Lyu
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2022 lúc 20:13

a: Gọi d=UCLN(4n+8;2n+3)

\(\Leftrightarrow4n+8-4n-6⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+3 là số lẻ

nên d=1

=>ĐPCM

b: Gọi a=UCLN(7n+4;9n+5)

\(\Leftrightarrow63n+36-63n-35⋮a\)

=>a=1

=>ĐPCM

Nguyễn Thảo Vân
Xem chi tiết
Vũ Phương Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 21:54

a: Gọi d=ƯCLN(2n+7;2n+3)

=>2n+7 chia hết cho d và 2n+3 chia hết cho d

=>2n+7-2n-3 chia hết cho d

=>4 chia hết cho d

mà 2n+7 lẻ

nên d=1

=>PSTG

b: Gọi d=ƯCLN(6n+5;8n+7)

=>4(6n+5)-3(8n+7) chia hết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

 

Nguyễn Bảo Lâm
28 tháng 2 lúc 19:38

1.    a. Tính :

1.    a. Tính :

Lê Nhật Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2022 lúc 9:55

a: Vì n+1 và n+2 là hai số tự nhiên liên tiếp

nên UCLN(n+1,n+2)=1

hay A là phân số tối giản

b: Gọi a là UCLN(n+4;2n+9)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+9⋮a\\2n+8⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)

Vậy: B là phân số tối giản

c: Gọi b là UCLN(12n+1;30n+2)

\(\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮b\\60n+4⋮b\end{matrix}\right.\Leftrightarrow1⋮b\Leftrightarrow b=1\)

Vậy: C là phân số tối giản

Lê Tuệ Đan
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 4 2021 lúc 16:11

b) Gọi \(d\inƯC\left(3n+2;2n+1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\2n+1⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+4⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(3n+2;2n+1\right)=1\)

hay \(B=\dfrac{3n+2}{2n+1}\) là phân số tối giản (đpcm)

HELLO^^^$$$
9 tháng 4 2021 lúc 12:49

Gọi ƯCLN(n-1,n-2)=d

n-1⋮d 

n-2⋮d

(n-1)-(n-2)⋮d

1⋮d ⇒ƯCLN(n-1,n-2)=1

Vậy n-1/n-2 là ps tối giản

Giải:

A=n-1/n-2

Gọi ƯCLN(n-1;n-2)=d

=>n-1:d

    n-2:d

=>(n-1)-(n-2):d

       -1:d

=>d=1

=>ƯCLN(n-1;n-2)=1

Vậy n-1/n-2 là phân số tối giản.

B=3n+2/2n+1

Gọi ƯCLN(3n+2;2n+1)=d

=>3n+2:d                  =>2.(3n+2):d          =>6n+4:d

    2n+1:d                      3.(2n+1):d               6n+3:d

=>(6n+4)-(6n+3):d

        1:d

=>d=1

Vậy 3n+2/2n+1 là phân số tối giản.

Câu C bạn tự làm nhé!

Chúc bạn may mắn!

Nguyễn Thiên Phúc
Xem chi tiết
Akai Haruma
17 tháng 4 2022 lúc 0:10

Lời giải:

a/

Gọi ƯCLN(n+1, 2n+3)=d$ 

Khi đó:

$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$

$2n+3\vdots d(2)$

Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản. 

Câu b,c làm tương tự.

An Bùi
Xem chi tiết
Nguyễn Huy Tú
28 tháng 1 2022 lúc 9:34

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Rhider
28 tháng 1 2022 lúc 9:36

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)