giúp mik vs
1, Đưa pt sau về dạng pt bậc 2 rồi áp dụng
3x\(^2\) - 2x = x\(^2\)+3
giải các pt sau băng cách đưa về dạng tích:
1) 3x^2-7x+1=0
2) 2^3+5x^2-3x=0
3) x^3-7x+6=0
4) (2x+1)^2=(x-1)^2
3)
\(x^3-7x+6=0\)
\(\Leftrightarrow x^3+3x^2-3x^2-9x+2x+6=0\)
\(\Leftrightarrow\left(x^3+3x^2\right)-\left(3x^2+9x\right)+\left(2x+6\right)=0\)
\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)
4) \(\left(2x+1\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow3x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy ................
2.
\(2x^3+5x^2-3x=0\)
\(\Leftrightarrow2x^3+6x^2-x^2-3x=0\)
\(\Leftrightarrow\left(2x^3+6x^2\right)-\left(x^2+3x\right)=0\)
\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x^2-x\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Đưa ra mỗi dạng 10 ví dụ và giải : - phương trình bậc nhất quy về bậc 2 - pt bậc 2 Giúp em với ạ 😢
Giải các pt sau = cách đưa về pt tích:
a,(3x-1)(5x+3)=(2x+3)(3x-1)
b,9x2 -1=(3x+1)(2x-1)
c,(4x-3)2 = 4(x2-2x+1)
d,2x3 +5x2 -7=0
a, (3x - 1)(5x + 3) = (2x + 3)(3x - 1)
⇔ 5x + 3 = 2x + 3
⇔ 3x = 0
⇔ x = 0
Vậy phương trình có nghiệm là x = 0
Mình làm lại rồi nhé!
a, (3x - 1)(5x + 3) = (2x + 3)(3x - 1)
⇔ 5x + 3 = 2x + 3
⇔ 3x = 0
⇔ x = 0
Vậy phương trình có nghiệm là x = 3.
b, 9x2 - 1 = (3x + 1)(2x - 1)
⇔ (3x + 1)(3x - 1) = (3x + 1)(2x - 1)
⇔ 3x - 1 = 2x - 1
⇔ x = 0
Vậy phương trình có nghiệm là x = 0
bạn nào giúp mk câu này nka...cảm ơn trước
đưa về PT tích ..:
12-3.(x-2)^2=(x+2).(1-3x)+2x
Giải các PT sau bằng cách đưa về dạng PT tích
b) x^2+10x+25-4x.(x+5)=0 c/(4x-5)^2-2.(16x^2-25)=0 d/(4x+3)^2=4.(x^2-2x+1) e/ x^2-11x+28=0
x2+10x+25-4x(x+5)=0
⇔(x+5)2-4x(x+5)=0
⇔(x+5)(x+5-4x)=0
⇔(x+5)(5-3x)=0
⇔\(\left\{{}\begin{matrix}x+5=0\\5-3x=0\end{matrix}\right.\Leftrightarrow\left\{{} }\left\{{}\begin{matrix}x=-5\\x=\dfrac{5}{3}\end{matrix}\right.\)
tìm GTNN VÀ GTLN của A = \(\frac{x^2-x+1}{x^2+x+1}\)
Lưu ý: Nhân chéo đưa về pt bậc 2 ẩn x tham số A rồi tìm đk để pt có nghiệm x.
Bạn tham khảo câu trả lời tại đây:
Câu hỏi của Nguyễn Kim Chi - Toán lớp 8 - Học toán với OnlineMath
Giúp e vs ạ Giải bất pt: a) 2x - x(3x + 1) < 15 - 3x(x + 2) b) 4(x - 3)² - (2x - 1)² ≥ 12x
a: =>2x-3x^2-x<15-3x^2-6x
=>x<-6x+15
=>7x<15
=>x<15/7
b: =>4x^2-24x+36-4x^2+4x-1>=12x
=>-20x+35>=12x
=>-32x>=-35
=>x<=35/32
\(a,2x-x\left(3x+1\right)< 15-3x\left(x+2\right)\\ \Leftrightarrow2x-3x^2-x< 15-3x^2-6x\\ \Leftrightarrow3x^2-3x^2+2x+6x-x< 15\\ \Leftrightarrow7x< 15\\ \Leftrightarrow x< \dfrac{15}{7}\)
Vậy S={-∞; 15/7}
\(b,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12x\\ \Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-12x\ge0\\ \Leftrightarrow4x^2-4x^2-24x+4x-12x\ge-36+1\\ \Leftrightarrow-32x\ge-35\\ \Leftrightarrow x\le\dfrac{35}{32}\)
Vậy S={-∞; 35/32]
Giải pt về dạng ax+b=0
b) 2x(x + 2)^2 - 8x^2 = 2(x - 2)( x^2 + 2x + 4)
d) (x - 2)^3 + (3x - 1)(3x + 1) = (x + 1)^3
b: \(\Leftrightarrow2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
\(\Leftrightarrow2x^3+8x^2+8x-8x^2-2x^3+16=0\)
=>8x+16=0
=>x=-2
d: \(\Leftrightarrow x^3-6x^2+12x-8+9x^2-1-x^3-3x^2-3x-1=0\)
\(\Leftrightarrow9x-10=0\)
=>x=10/9
GIẢI PT NÀY GIÚP MIK VS: >.<
1) /x2 - 1/ + /x + 2/ = 6
2) / x2 + 2x/ + / 3x2 + 6x + 3/ = 1