CMR: biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\) luôn chia hết cho 5 với mọi \(n\in Z\)
CMR Biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\) luôn chia hết cho 5 với mọi n là số nguyên
\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n\) nên sẽ luôn chia hết cho 5 với mọi n là số nguyên
Chứng minh rằng biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\)luôn chia hết cho 5 với mọi số nguyên n
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
=-5n
-5n chia het cho 5 voi moi so nguyên n vi -5 chia het cho 5
vay n(2n-3)-2n(n+1) chia het cho 5
Chứng minh rằng biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\) luôn chia hết cho 5 với mọi số nguyên n ?
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\) = \(2n^2-3n-2n^2-2n\)
= \(-5n\)
Vì \(-5⋮5\) => -5n \(⋮\) 5
=> \(n\left(2n-3\right)-2n\left(n+1\right)\) \(⋮\) 5 với mọi n \(\in\) Z
n(2n-3)-2n(n+1)=2n2-3n+2n2-2n=-5n \(⋮\) 5 với mọi n
Chứng minh rằng biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\) luôn chia hết cho 5 với mọi số nguyên n.
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
\(-5n\)chia hết cho \(5\)với mọi số nguyên \(n\)vì \(-5\)chia hết cho \(5\)
Vậy : \(n\left(2n-3\right)-2n\left(n+1\right)\)chia hết cho \(5\)
CMR biểu thức A= n(2n-3)-2n(n+1)luôn chia hết cho 5 với mọi n thuộc z
A= n(2n-3)-2n(n+1)
A= 2n2-3n-2n2-2n
A=-5n
vì -5 chia hết cho 5
Nên -5n chia hết cho 5
hay A chia hết cho 5 với n thuộc z
Biểu thức \(\left(2m-3\right)\left(3n-2\right)-\left(3m-2\right)\left(2n-3\right)\)
luôn chia hết cho\(5\)với mọi số nguyên m,n
Biểu thức đó bằng 5m - 5n nên chia hết cho 5 với mọi m,n nguyên
Chứng minh rằng biểu thức \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\) chia hết cho 3 với mọi giá trị của n ?
Ta có : \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)
\(=n\left(3-2n\right)-\left(3-2n\right)-n^2-5n\)
\(=3n-2n^2-3+2n-n^2-5n\)
\(=-3n^2-3\)
\(=-3\left(n^2+1\right)⋮3\)
Vậy \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)⋮3\)
Ta có \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)=3n-2n^2-3+2n-n^2-5n=-3n-3\)
mà -3n chia hết cho 3,-3 chia hết cho 3
=> biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3(đpcm)
(n-1)(3-2n)-n(n+5)
=3n-2n2-3+2n-n2-5n
=-3n2-3
vậy (n-1)(3-2n)-n(n+5)\(⋮\)3 vs mọi giá trị của n
Chứng minh rằng biểu thức \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\) chia hết cho 3 với mọi gía trị của n.
\(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)=n\left(3-2n\right)-1\left(3-2n\right)-n\left(n+5\right)\)
\(=3n-2n^2-3+2n-n^2-5n=\left(3n+2n-5n\right)-\left(2n^2+n^2\right)-3=-3n^2-3\)
\(=-\left(3n^2+n\right)=-3n\left(n+1\right)=3.\left(-n\right).\left(n+1\right)\) chia hết cho 3 với mọi n
CÁC BẠN CÓ THỂ GIÚP MÌNH ĐƯỢC KHÔNG?
1) Cho a,b \(\varepsilon\)N, biết a chia cho 3 dư 1, b chia cho 3 dư 2
Chứng minh rằng: biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\)luôn chia cho hết cho 5, với mọi giá trị của n\(\varepsilon Z\)
GIẢI RA DÙM MÌNH ĐƯỢC KHÔNG??? CÓ GÌ MÌNH TICK CHO NHA!!!
bn ơi mk là zz thiên hương zz nè ! câu hỏi thứ nhất là tìm a,b hay là chứng minh ab chia cho 3 dư2 ,vậy bạn !