tìm x thuộc z biết x + (x+1) + (x+2) + ... + 2023 + 2024 = 2024
tìm x biết : x+...+2023+2024=2024
Tìm x thuộc Z, biết:
a, 8x . ( 2023 + x ) - 8x . ( x + 2024 ) = 56
b, 5 - 2025x = 9 - 2026 . ( x - 1 )
c, ( - 12 ) mũ 2 . x = 56 + 10 . 13x
d, - ( x - 32 + 11 ) = ( 21 - 33 - x + 7 )
e, - 2 . ( x + 6 ) + 6 . ( x + 10 ) = 8
a: \(8x\left(2023+x\right)-8x\left(x+2024\right)=56\)
=>\(8x\left(x+2023-x-2024\right)=56\)
=>-8x=56
=>\(x=\frac{56}{-8}=-7\) (nhận)
b: \(5-2025x=9-2026\left(x-1\right)\)
=>-2025x+5=9-2026x+2026
=>-2025x+5=-2026x+2035
=>x=2035-5=2030(nhận)
c: \(\left(-12\right)^2\cdot x=56+10\cdot13x\)
=>144x=56+130x
=>14x=56
=>x=4(nhận)
d: -(x-32+11)=(21-33-x+7)
=>-(x-21)=(-x-5)
=>-x+21=-x-5
=>21=-5(vô lý)
=>x∈∅
e: \(-2\left(x+6\right)+6\left(x+10\right)=8\)
=>-2x-12+6x+60=8
=>4x+52=8
=>4x=8-52=-44
=>\(x=-\frac{44}{4}=-11\) (nhận)
Biết: x + (x - 1) - (x - 2) + (x - 3) - (x - 4) +.....+ (x - 2023) - (x -2024) =0
Vậy x =?
A. 0
B. -1011
C. -1012
D. -2024
tim x^2023+y^2024+z^2024
\(P\left(x\right)\)=\(x^{2023}-2024.x^{2022}+2024.x^{2021}-2024.x^{2020}+.....+2024.x-1\)
tính P ( 2023)
Giải nhanh giúp mik ạ !! đang cânf gấp O(∩_∩)O
Với x = 2023
<=> x + 1 = 2024
Khi đó P(2023) = x2023 - (x + 1).x2022 + ... + (x + 1).x - 1
= x2023 - x2023 - x2022 + .. + x2 + x - 1
= x - 1 = 2023 - 1 = 2022
a, cho a, b là 2 số thoả mãn |a-2b+3|\(^{2023}\) + (b-1)\(^{2024}\) = 0. Tính giá trị biểu thức
P = a\(^{2023}\) x b\(^{2024}\) + 2024
b, 3 số hữu tỉ x,y,z thoả mãn xy+yz+zx = 2023. Chứng tỏ rằng:
A = \(\dfrac{\left(x^2+2023\right)x\left(y^2+2023\right)x\left(z^2+2023\right)}{16}\) viết được dưới dạng bình phương của 1 số hữu tỉ
a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)
\(\left(b-1\right)^{2024}>=0\forall b\)
Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)
Thay a=-1 và b=1 vào P, ta được:
\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)
tìm giá trị lớn nhất của P = \(\dfrac{|x-2022|-|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)
Đặt A=|x-2022|+|x-2023|+|x-2024|
TH1: x<2022
=>x-2022<0; x-2023<0; x-2024<0
=>A=-x+2022-x+2023-x+2024=-3x+6069
Vì hàm số A=-3x+6069 là hàm số nghịch biến trên R
nên A nhỏ nhất khi x lớn nhất
Khi x<2022 thì x không có giá trị lớn nhất
=>A không có giá trị nhỏ nhất(1)
TH2: 2022<=x<2023
=>x-2022>=0; x-2023<0; x-2024<0
=>A=x-2022+2023-x+2024-x=-x+2025
Vì hàm số A=-x+2025 là hàm số nghịch biến trên R
nên A nhỏ nhất khi x lớn nhất
Khi 2022<=x<2023 thì x không có giá trị lớn nhất
=>A không có giá trị nhỏ nhất(2)
TH3: 2023<=x<2024
=>x-2022>0; x-2023>=0; x-2024<0
=>A=x-2022+x-2023+2024-x=x-2021
Vì hàm số A=x-2021 là hàm số đồng biến trên R
nên A nhỏ nhất khi x nhỏ nhất
Khi 2023<=x<2024 thì \(x_{\min}=2023\)
=>A min=2023-2021=2(3)
TH4: x>=2024
=>x-2022>0; x-2023>0; x-2024>=0
=>A=x-2022+x-2023+x-2024=3x-6069
Vì hàm số A=3x-6069 là hàm số đồng biến trên R
nên A nhỏ nhất khi x nhỏ nhất
Khi x>=2024 thì \(x_{\min}=2024\)
=>\(A_{\min}=3\cdot2024-6069=6072-6069=3\) (4)
Từ (1),(2),(3),(4) suy ra \(A_{\min}=3\) khi x=2023
Ta có: \(P=\frac{|x-2022|+|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)
\(=1+\frac{2022}{|x-2022|+|x-2023|+|x-2024|}=1+\frac{2022}{A}\)
\(A\ge3\forall x\)
=>\(\frac{2022}{A}\le\frac{2022}{3}=674\forall x\)
=>\(1+\frac{2022}{A}\le1+674=675\forall x\)
=>P<=675∀x
Dấu '=' xảy ra khi x=2023
Lời giải:
Ta có:
$(x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=2023.\frac{2024}{2023}$
$\Leftrightarrow 1+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+1+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+1=2024$
$\Leftrightarrow 3+\frac{x+z}{y}+\frac{y+z}{x}+\frac{x+y}{z}=2024$
$\Leftrightarrow 3+B=2024$
$\Leftrightarrow B=2021$
Cho x+y+z=2023 và 1/x + 1/y + 1/z = 2024/2023 Tính giá trị biểu thức B= y+z/x + z+x/y +x+y/z