Cho tam giác MNP vuông tại M có MN=5cm, MP=12cm và đường cao MH.
a. Chứng minh: tam giác MNP đồng dạng tam giác HNM. Từ đó suy ra MN^2=NH.NP
b. Tính NP,NH.
c. Cho NQ là phân giác của góc MNP (Q thuộc MP). Chứng minh: QM/QP và QM,QP.
d. Gọi E là giao điểm MH và NQ. Tính tỉ số S^MNQ/S^HNE
a: Xét ΔMNP vuông tại M và ΔHNM vuông tại H có
góc N chung
DO đó: ΔMNP∼ΔHNM
Suy ra: NM/NH=NP/NM
hay \(NM^2=NH\cdot NP\)
b: NP=13cm
\(NH=\dfrac{MN^2}{NP}=\dfrac{25}{13}\left(cm\right)\)
Cho tam giác MNP có MN<MP. Tia phân giác của góc M cắt NP tai D.Trên cạnh MP lấy E sao cho MN=ME
a/CmR: Tam giác MND=MEP
b/Nếu tam giác MNP có góc M=90 độ thì đó l tam giác j
a: Xét ΔMND và ΔMED có
MN=ME
\(\widehat{NMD}=\widehat{EMD}\)
MD chung
Do đó: ΔMND=ΔMED
b: Xét ΔMNP có \(\widehat{M}=90^0\)
nên ΔMNP vuông tại M
Tam giác MNP vuông ở M có chu vi 180cm. Độ dài cạnh MP lớn hơn MN 20cm, cạnh NP dài 80cm. Tính:
a) Độ dài cạnh MN và NP
b) Diện tích hình tam giác MNP
Cho tam giác MNP vuông tại M, có N = 60 độ và MN = 8cm. Tia phân giác của góc N cắt MP tại K. Kẻ KQ vuông góc với NP tại Q.
a) Chứng minh △MNK = △QNK.
b) Xác định dạng của tam giác MNQ và NKP.
c) Tính độ dài cạnh MQ, QP
a) Xét \(\Delta MNK\left(\widehat{M}=90^o\right)\) và \(\Delta QNK\left(\widehat{Q}=90^o\right)\) có:
\(\widehat{MNK}=\widehat{QNK}\) (giả thiết)
\(NK\) là cạnh chung
\(\Rightarrow\Delta MNK=\Delta QNK\left(ch.gn\right)\)
b) Vì \(\Delta MNK=\Delta QNK\left(cmt\right)\)
\(\Rightarrow MN=QN\) (\(2\) cạnh tương ứng)
\(\Rightarrow\Delta MNQ\) cân tại \(N\)
Mà \(\widehat{MNQ}=60^o\)
\(\Rightarrow\Delta MNQ\) đều
Vì \(NK\) là tia phân giác \(\widehat{MNP}\) (giả thiết)
\(\Rightarrow\widehat{MNK}=\widehat{QNK}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^o}{2}=30^o=\widehat{NPK}\)
\(\Rightarrow\Delta NKP\) cân tại \(K\)
c) Vì \(\Delta NMQ\) đều (chứng minh trên)
\(\Rightarrow NM=MQ=NQ=8cm\)
Xét \(\Delta NMP\left(\widehat{M}=90^o\right)\) có:
\(PN=2MN=2.8=16cm\)
\(\Rightarrow PQ=16-8=8cm\)
a: Xét ΔMNK vuông tại M và ΔQNK vuông tại Q có
NK chung
\(\widehat{MNK}=\widehat{QNK}\)
Do đó: ΔMNK=ΔQNK
b: Ta có: ΔMNK=ΔQNK
nên NM=NQ
=>ΔNMQ cân tại N
mà \(\widehat{MNQ}=60^0\)
nên ΔMNQ đều
Xét ΔNKQ có
\(\widehat{KPN}=\widehat{KNP}\)
nên ΔNKQ cân tại K
c: Xét ΔMNP vuông tại M có
\(\cos N=\dfrac{MN}{NP}\)
=>NP=16(cm)
=>\(MP=8\sqrt{3}\left(cm\right)\)
Cho tam giác MNP vuông tại M có MN = 12cn, NP = 20cm. Tính MP và gốc P (làm tròn đến độ)
Áp dụng PTG: \(MP=\sqrt{NP^2-MN^2}=16\left(cm\right)\)
\(\sin P=\dfrac{MN}{NP}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{P}\approx37^0\)
cho tam giác MNP vuông góc ở M có chu vi 180cm . độ dài cạnh MP lớn hơn MN là 20cm và cạnh NP dài 80cm . tính : a. độ dài cạnh MN và cạnh MP b. tính s tam giác MNP
MN+MP+NP=180
MN+MP+80=180cm
MP-MN=20cm
MN+MP=100cm
a.ĐỘ DÀI CẠNH MP LÀ: ((MN+MP)+(MP-MN))÷2=(100+20)÷2=60cm( tổng và hiệu)
Độ dài cạnh MN là: MP-20= 60-20=40cm
b. Diện tích tam giác vuông MNP là: 1/2× MN x MP=1/2 × 40 × 60= 1200cm2
Tổng độ dài của cạnh MN và MP là:
180 - 80 = 100(cm)
Độ dài cạnh MN là:
(100 - 20): 20 = 40(cm)
Độ dài cạnh MP là:
100 - 40 = 60(cm)
Diện tích tam giác MNP là:
40x60:2 = 1200(cm2)
Đ/S:..............
cho tam giac mnp có góc N=90 độ, biết MN = 8cm, NP=6cm.Đường phân giác của góc M cắt NP tại E
a) Tính MP = ?
b)Chứng minh tam giác MNE = tam giác MFE
c)Chứng minh tam giác MNF là tam giác gì?Vì sao?
Cho tam giác MNP vuông tại M có MN=5cm MP=12cm kẻ đường cao MH(H thuộc NP)
a) chứng minh tam giác HNM Đồng dạng với tam giác MNP b)tính độ dài các đường thẳng NP MH c)trong MNP kẻ phân giác MD (D thuộc MN) Tam giác MDP kẻ phân giác DF(F thuộc MP) chứng minh EM/EN =DN/DP=FP/FM=1
cho tam giác MNP có góc M=90 độ, đường cao MH. tính MP biết MN=6cm, NP=3NH
Xét ΔMNP vuông tại M có MH là đường cao
nên \(NH\cdot NP=MN^2\)
=>\(NH\cdot3NH=6^2=36\)
=>\(NH^2=12\)
=>\(NH=2\sqrt{3}\left(cm\right)\)
=>\(NP=3\cdot NH=6\sqrt{3}\left(cm\right)\)
ΔMNP vuông tại M
=>\(MN^2+MP^2=NP^2\)
=>\(MP^2+6^2=\left(6\sqrt{3}\right)^2=108\)
=>\(MP^2=108-36=72\)
=>\(MP=6\sqrt{2}\left(cm\right)\)