Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quang Anh Nguyễn

Cho tam giác MNP vuông tại M, có N = 60 độ và MN = 8cm. Tia phân giác của góc N cắt MP tại K. Kẻ KQ vuông góc với NP tại Q.

a) Chứng minh △MNK = △QNK.

b) Xác định dạng của tam giác MNQ và NKP.

c) Tính độ dài cạnh MQ, QP

Nguyễn Thái Thịnh
1 tháng 2 2022 lúc 23:52

a) Xét \(\Delta MNK\left(\widehat{M}=90^o\right)\) và \(\Delta QNK\left(\widehat{Q}=90^o\right)\) có:

\(\widehat{MNK}=\widehat{QNK}\) (giả thiết)

\(NK\) là cạnh chung

\(\Rightarrow\Delta MNK=\Delta QNK\left(ch.gn\right)\)

b) Vì \(\Delta MNK=\Delta QNK\left(cmt\right)\)

\(\Rightarrow MN=QN\) (\(2\) cạnh tương ứng)

\(\Rightarrow\Delta MNQ\) cân tại \(N\)

Mà \(\widehat{MNQ}=60^o\)

\(\Rightarrow\Delta MNQ\) đều

Vì \(NK\) là tia phân giác \(\widehat{MNP}\) (giả thiết)

\(\Rightarrow\widehat{MNK}=\widehat{QNK}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^o}{2}=30^o=\widehat{NPK}\)

\(\Rightarrow\Delta NKP\) cân tại \(K\)

c) Vì \(\Delta NMQ\) đều (chứng minh trên)

\(\Rightarrow NM=MQ=NQ=8cm\)

Xét \(\Delta NMP\left(\widehat{M}=90^o\right)\) có:

\(PN=2MN=2.8=16cm\)

\(\Rightarrow PQ=16-8=8cm\)

Nguyễn Lê Phước Thịnh
1 tháng 2 2022 lúc 23:36

a: Xét ΔMNK vuông tại M và ΔQNK vuông tại Q có

NK chung

\(\widehat{MNK}=\widehat{QNK}\)

Do đó: ΔMNK=ΔQNK

b: Ta có: ΔMNK=ΔQNK

nên NM=NQ

=>ΔNMQ cân tại N

mà \(\widehat{MNQ}=60^0\)

nên ΔMNQ đều

Xét ΔNKQ có 

\(\widehat{KPN}=\widehat{KNP}\)

nên ΔNKQ cân tại K

c: Xét ΔMNP vuông tại M có 

\(\cos N=\dfrac{MN}{NP}\)

=>NP=16(cm)

=>\(MP=8\sqrt{3}\left(cm\right)\)


Các câu hỏi tương tự
Min Kim Anh
Xem chi tiết
Min Kim Anh
Xem chi tiết
Nguyễn Thành Nam
Xem chi tiết
Nguyễn Phương Nhi
Xem chi tiết
Ngọc Minh Nguyễn
Xem chi tiết
zed1
Xem chi tiết
minh
Xem chi tiết
Phương Thúy Ngô
Xem chi tiết
LuHan
Xem chi tiết