n^4+7 (7+4n^3)chia hết cho 64 với mọi n lẻ
chứng minh rằng n^4 +7( 7 +2n^3) chia hết 64 với mọi n lẻ
n4 + 7( 7 + 2n2 )
= n4 + 14n2 + 49
= ( n2 + 7 )2
Vì n lẻ và n ∈ Z => n = 2k + 1 ( k ∈ Z )
Thế vô ta được :
[ ( 2k + 1 )2 + 7 ]2
= ( 4k2 + 4k + 1 + 7 )2
= ( 4k2 + 4k + 8 )2
= [ 4( k2 + k + 2 ) ]2
= { 4[ k( k + 1 ) + 2 ] }2
Ta có : k( k + 1 ) chia hết cho 2
2 chia hết cho 2
=> k( k + 1 ) + 2 chia hết cho 2
=> 4[ k( k + 1 ) + 2 ] chia hết cho 8
=> { 4[ k( k + 1 ) + 2 ] }2 chia hết cho 64
=> đpcm
Chứng minh rằng \(n^4+7\left(7+2n^2\right)\) chia hết cho 64 với mọi n là số lẻ.
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
phân tích n^2+4n+8=(n+1)(n+3)
vì là số tự nhiên lẻ nên đặt n=2k+1(k thuộc N)
=>n^2+4n+8=(n+1)(n+3)=(2k+2)(2k+4)
=4.(k+1)(k+2)
(k+1)(k+2) là tích 2 số tự nhiên liên tiếp chia hết cho 2
=>4.(k+1)(k+2)\(⋮\)8
Chứng minh:
a) 24n -1 chia hết cho 15 với mọi n thuộc N
b) 3663 -1 chia hết cho 7 và không chia hết cho 37
c) n4 -10n2 +9 chia hết cho 384 với mọi n lẻ, n thuộc Z
d) a3 -a chia hết cho 3
e) a7 -a chia hết cho 7
em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122
Ta có \(n^4-10n^2+9=n^4-n^2-\left(9n^2-9\right)=n^2\left(n^2-1\right)-9\left(n^2-1\right)=\left(n^2-9\right)\left(n^2-1\right)\)
\(=\left(n-3\right)\left(n+3\right)\left(n-1\right)\left(n+1\right)=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
Do n là số lẻ suy ra n có dạng \(2d+1\)nên ta sẽ cm \(\left(2d-2\right)2d\left(2d+2\right)\left(2d+4\right)=16\left(d-1\right)d\left(d+1\right)\left(d+2\right)⋮16\)
Giờ ta cần chứng minh \(\left(d-1\right)d\left(d+1\right)\left(d+2\right)⋮24\)thật vậy :
\(d-1;d;d+1;d+2\)là 4 số nguyên liên tiếp nên chia hết cho 8 và 3
Suy ra ta có điều phải chứng minh
Chứng minh rằng n4+7(7+2n2) chia hết cho 64 với mọi số nguyên lẻ
CM : n4+7(7+2n2) chia hết cho 64 với mọi n lẻ và n thuộc z
Ta có :
\(n^4+7\left(7+2n^2\right)\)
\(=n^4+49+14n^2\)
\(=\left(n^2+7\right)^2\)
Vì n là số nguyên lẻ nên n có dạng 2k + 1 với k là số nguyên
\(\Rightarrow\left(n^2+7\right)^2=\left[\left(2k+1\right)^2+7\right]^2\)
\(=\left[\left(4k^2+4k+1\right)+7\right]^2\)
\(=\left(4k^2+4k+8\right)^2\)
\(=\left[4k\left(k+1\right)+8\right]^2\)
Vì \(\hept{\begin{cases}k\left(k+1\right)⋮2\forall k\in Z\\4⋮4\end{cases}}\) nên \(4k\left(k+1\right)⋮8\forall k\in Z\)
\(\Rightarrow4k\left(k+1\right)+8⋮8\forall k\in Z\)
\(\Rightarrow\left[4k\left(k+1\right)+8\right]^2⋮8^2\forall k\in Z\)
\(\Rightarrow\left[4k\left(k+1\right)+8\right]⋮64\forall k\in Z\)
=> đpcm
n4 + 7( 7 + 2n2 )
= n4 + 14n2 + 49
= ( n2 + 7 )2
Vì n lẻ và n ∈ Z => n = 2k + 1 ( k ∈ Z )
Thế vô ta được :
[ ( 2k + 1 )2 + 7 ]2
= ( 4k2 + 4k + 1 + 7 )2
= ( 4k2 + 4k + 8 )2
= [ 4( k2 + k + 2 ) ]2
= { 4[ k( k + 1 ) + 2 ] }2
Ta có : k( k + 1 ) chia hết cho 2
2 chia hết cho 2
=> k( k + 1 ) + 2 chia hết cho 2
=> 4[ k( k + 1 ) + 2 ] chia hết cho 8
=> { 4[ k( k + 1 ) + 2 ] }2 chia hết cho 64
=> đpcm
a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn
b: Đặt \(A=n^3+3n^2-n-3\)
\(=\left(n^3+3n^2\right)-\left(n+3\right)\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
n lẻ nên n=2k+1
=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)
=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)
c:
d: Đặt \(B=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)
\(=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n-4\right)\left(n^3-4n\right)\)
\(=n\left(n-4\right)\left(n^2-4\right)\)
\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)
n chẵn và n>=4 nên n=2k
B=n(n-4)(n-2)(n+2)
\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)
\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)
Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp
nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)
=>B chia hết cho \(16\cdot24=384\)
CMR:
a)n^3+3n^2-n+3 chia hết cho 48 với mọi n lẻ
b)n^4+4n^3-4n^2-16n chia hết cho 384 với mọi n chẵn
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
8. Tìm tất cả các số tự nhiên n để :
n4+ 4 là số nguyên tố
n1994+ n1993+ 1 là số nguyên tố