cho cac so duong a,b,c thoa man : ab+a+b=3
tim GTNN cua bieu thuc C=a^2+b^2
cho a,b,c la cac so thoa man (a+1)^2+(b+2)^2+(c+3)2<2010.tim GTNN cua bieu thuc A=ab+b(c-1)+c(a-2)
Cho a,b,c la cac so nguyen duong thoa man a+b+c=3 Tim gia tri nho nhat cua bieu thuc sau
a2/b+c + b2/c+a + c2/a+b
Ta có : \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Tương tự : \(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b\) ; \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\left(a+b+c\right)-\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}=\frac{3}{2}\)
Vậy Min = 3/2 \(\Leftrightarrow a=b=c=1\)
Cho a,b,c la cac so duong thoa man a+b+c=9.Tim gia tri nho nhat cua bieu thuc:
\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)
\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)
Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)
"="<=>a=b=c=3
Cho cac so a, b, c thoa man a2 +b2+c2( <=) 2 .Tim gia tri nho nhat cua bieu thuc S=2015ca-ab-bc
cho 3 so thuc duong a, b, c thoa man 1/a+1/c=2/b. tim GTNN cua (a+b)/(2a-b)+(b+c)(/2c-b)
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow b=\frac{2ac}{a+c}\)
\(P=\frac{a+b}{2a-b}+\frac{b+c}{2c-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{\frac{2ac}{a+c}+c}{2c-\frac{2ac}{a+c}}=\frac{a+3c}{2a}+\frac{3a+c}{2c}=1+\frac{3}{2}\left(\frac{a}{c}+\frac{c}{a}\right)\ge4\)
Dấu "=" xảy ra khi \(a=b=c\)
1. Cho a,b,c,d la cac so nguyen thoa man \(a^2=b^2+c^2+d^2\)
chung minh rang a.b.c.d + 2015 viet duoc duoi dang hieu cua 2 so chinh phuong.
2. Cho a,b la cac so duong thoa man dieu kien a+b=1. tim gia tri nho nhat cua bieu thuc
\(P=\frac{2+a}{\sqrt{2-a}}+\frac{2+b}{\sqrt{2-b}}\)
cho a,b la cac so duong thoa man : a+b=1
Tim gia tri nho nhat cua bieu thuc: T= \(\frac{19}{ab}+\frac{6}{a^2+b^2}+2011\left(a^4+b^4\right)\)
\(T_{min}=\frac{2715}{8}\) tại \(a=b=\frac{1}{2}\)
\(T=\frac{19}{ab}+\frac{6}{a^2+b^2}+2011\left(a^4+b^4\right)\)
\(=\frac{19}{ab}+\frac{6}{a^2+b^2}+304\left(a^4+b^4+\frac{1}{16}+\frac{1}{16}\right)+48\left(a^4+\frac{1}{16}\right)+48\left(b^4+\frac{1}{16}\right)+1659\left(a^4+b^4\right)-44\)
\(\ge\frac{19}{ab}+\frac{6}{a^2+b^2}+304ab+24\left(a^2+b^2\right)+1659.\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}-44\)
\(=\left(\frac{19}{ab}+304ab\right)+\left(\frac{6}{a^2+b^2}+24\left(a^2+b^2\right)\right)+\frac{1307}{8}\)
\(\ge152+24+\frac{1307}{8}=\frac{2715}{8}\)
Cho a,b la cac so thuc duong thoa man a^2 +b^2 =2.Tim gia tri lon nhat cua bieu thuc
P=a\(\sqrt{b\left(a+8\right)}\)+b\(\sqrt{a\left(b+8\right)}\)
Áp dụng bđt : (x+y)^2 < = 2.(x^2+y^2) thì :
(a+b)^2 < = 2.(a^2+b^2) = 2 . 2 = 4
=> a+b < = 2
Áp dụng bđt cosi ta có : 2a.b < = a^2+b^2 = 2
<=> a.b < = 1
Có :
P = \(\sqrt{ab}\). ( \(\sqrt{a.\left(a+8\right)}+\sqrt{b.\left(b+8\right)}\))
< = 1 . \(\frac{\sqrt{9a.\left(a+8\right)}+\sqrt{9b.\left(b+8\right)}}{3}\)
Áp dụng bđt : x.y < = (x+y)^2/4 thì :
P < = \(\frac{9a+a+8+9b+b+8}{2.3}\)
= \(\frac{10.\left(a+b\right)+16}{6}\)
< = \(\frac{10.2+16}{6}\)= 6
Dấu "=" xảy ra <=> a=b=1
Vậy ..............
Tk mk nha
cho a b la cac so nguyen duong thoa man a+20 b+1 chia het cho 21 tim so du trong phep chia cua bieu thuc A=4^a+9^a+a+b cho 21