M=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}\)
chứng minh M<\(\frac{1}{100}\)
Cho M =\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\) .Hãy chứng minh M<\(\frac{3}{16}\)
Câu 2 Chứng minh rằng :
\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
Cho M =\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}vaN=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
a) Tinh tich M.N
b) chung minh M<N
c) Chung minh M < \(\frac{1}{10}\)
c) \(M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{1}{2}.\frac{4}{4}.\frac{6}{6}...\frac{100}{100}=\frac{1}{2}\)
a) M . N = \(\left(\frac{1}{2.}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)=\frac{1.2.3.4....100}{2.3.4.5...101}=\frac{1}{101}\)
Chứng minh rằng : \(\frac{5}{6}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{11}{16}\)
Cho M = \(\frac{1}{2}\)× \(\frac{3}{4}\)×\(\frac{5}{6}\)× ...×\(\frac{99}{100}\)
Cho N = \(\frac{2}{3}\)× \(\frac{4}{5}\)×\(\frac{6}{7}\)× ...×\(\frac{100}{101}\)
Chứng minh rằng M < N
Tính M . N
Chứng minh rằng M < \(\frac{1}{10}\)
Chứng minh M=\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}< 1\)
Ta có :
\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)
\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)
\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)
\(=1-\frac{1}{100!}< 1\)
VẬY : \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}< 1\)
\(M=\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\)
\(N=\frac{2}{3}.\frac{4}{5}.....\frac{100}{101}\)
a) So sánh M và N
b)Tính tích M.N
c) Chứng minh M<\(\frac{1}{10}\)
Chứng minh rằng \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\frac{5}{3^5}-.........+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Chứng minh rằng :
a) \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\ldots+\frac{99}{100!}<1\)
b) \(\frac{1\times2-1}{2!}+\frac{2\times3-1}{3!}+\frac{3\times4-1}{4!}+\cdots+\frac{99\times100-1}{100}<2\)
c) \(\frac{1}{1\times2}+\frac{1}{3\times4}+\frac{1}{5\times6}+\cdots+\frac{1}{49\times50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+\frac{1}{29}+\cdots+\frac{1}{50}\)
c: \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\cdots+\frac{1}{49\cdot50}\)
\(=1-\frac12+\frac13-\frac14+\cdots+\frac{1}{49}-\frac{1}{50}\)
\(=1+\frac12+\frac13+\frac14+\cdots+\frac{1}{49}+\frac{1}{50}-2\left(\frac12+\frac14+\cdots+\frac{1}{50}\right)\)
\(=1+\frac12+\frac13+\frac14+\cdots+\frac{1}{50}-1-\frac12-\cdots-\frac{1}{25}\)
\(=\frac{1}{26}+\frac{1}{27}+\cdots+\frac{1}{50}\)
giúp em câu a b nx dc hem tại khó quá em chx học kiểu chấm than ở mẫu số
Bài 5 chứng minh: \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)