Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chii Phương
Xem chi tiết
songohan6
7 tháng 8 2020 lúc 16:13

\(\text{Đkxđ:}\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

\(A=\frac{\sqrt{a}-2}{1-\sqrt{a}}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{3a-3+\sqrt{9a}}{a+\sqrt{a}-2}\)

\(=\frac{2-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{3a-3+3\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{\left(2-\sqrt{a}\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)+3a-3+3\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{-\left(a-4\right)-\left(a-1\right)+3a-3+3\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{-a+4-a+1+3a-3+3\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)

Anh Quoc
Xem chi tiết
phan tuấn anh
22 tháng 6 2016 lúc 14:19

sao ko có đề bài ( toàn là rút gọn à)

Anh Quoc
22 tháng 6 2016 lúc 14:28

câu cuối sai nhé . đúng thì ntn

\(\frac{3a-3+\sqrt{9a}}{a+\sqrt{a-2}}-\frac{\sqrt{a+1}}{\sqrt{a+2}}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)

Cô Hoàng Huyền
22 tháng 6 2016 lúc 16:38

Cô giúp em nhé :)

a. \(A=\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\frac{3-\sqrt{x}}{x-1}\)

\(=\frac{x+\sqrt{x}+x-\sqrt{x}}{1-x}+\frac{3-\sqrt{x}}{x-1}=\frac{-2x-\sqrt{x}+3}{x-1}\)

\(=\frac{\left(-2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{-2\sqrt{x}-3}{\sqrt{x}+1}\)

b. \(B=\frac{\left(3+\sqrt{x}\right)^2-\left(3-\sqrt{x}\right)^2+4x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}:\frac{5\sqrt{x}-4\sqrt{x}-2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(B=\frac{12\sqrt{x}+4x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}:\frac{\sqrt{x}-2}{\sqrt{x}\left(3-\sqrt{x}\right)}=\frac{4x}{\sqrt{x}-2}\)

Trần Đạt
Xem chi tiết
tin bach
Xem chi tiết
Tô Hồng Nhân
25 tháng 10 2015 lúc 22:19

Ta có \(\left(\sqrt{a}+2\right)\left(1-\sqrt{a}\right)=a+\sqrt{a}-2\)

\(=\frac{3\text{a}+3\sqrt{a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)

\(=\frac{3\text{a}+3\sqrt{a}-3-a+1+a-4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{3\text{a}+3\sqrt{a}-6}{a+\sqrt{a}-2}\)

\(=\frac{3\left(a+\sqrt{a}-2\right)}{a+\sqrt{a}-2}\)

\(=3\)

b/ Ta có 3 là số nguyên nên biểu thức P luôn nguyên với mọi x

TICK CHO MÌNH NHA

 

trung hải nguyễn
Xem chi tiết
Nguyễn Thị Kiều
Xem chi tiết
Trần Quang Đài
19 tháng 3 2017 lúc 14:43

a=4 đó bạn

đây hình như là vòng 16

Trần Quang Đài
19 tháng 3 2017 lúc 21:06

bạn rút gọn và giải phương trình với P=3/|1-3 căn 5|

tìm được a=5

bạn thử với a = 4 thì tmđk

Nguyễn Quỳnh Mai
11 tháng 4 2017 lúc 10:16

a=3 bn ạ

Hoài Thu Vũ
Xem chi tiết
HT.Phong (9A5)
8 tháng 7 2023 lúc 17:46

a) \(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}=\left|3a^2\right|=3a^2\)

b) \(2\sqrt{a^2}-5a=2\left|a\right|-5a=-2a-5a=-7a\)

c) \(\sqrt{16\left(1+4x+4x^2\right)}=\sqrt{\left[4\left(1+2x\right)\right]^2}=\left|4\left(1+2x\right)\right|=4\left(1+2x\right)\)

 

Nguyễn Hoàng Hải Dương
Xem chi tiết
Nguyễn Trang
18 tháng 10 2015 lúc 9:18

a) ĐKXĐ:\(x\ge\frac{1}{3};x\ne1\)

b)\(P=\frac{3a+\sqrt{9a-3}-a+4+\sqrt{a}-1-a-\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{a+6+\sqrt{9a-3}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

Lee Je Yoon
Xem chi tiết
Trần Việt Linh
23 tháng 7 2016 lúc 14:12

Bài 1

a) \(P=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)    (ĐK : x\(\ge0\) ; x\(\ne\) 1)

        \(=\frac{3a+\sqrt{9a}-3}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)

         \(=\frac{3a+\sqrt{9a}-3-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{3a+\sqrt{9a}-3-a+1-a+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)

b) \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=\frac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)

Vậy để P là số nguyên thì: \(\sqrt{a}-1\inƯ\left(2\right)\)

Mà Ư(2)={-1;1;2;-1}

=> \(\sqrt{a}-1\in\left\{1;-1;2;-2\right\}\)

Ta có bảng sau:

\(\sqrt{a}-1\)1-12-2
a409\(\sqrt{a}=-1\) (ktm)

vậy a={0;4;9} thì P nguyên

Trần Việt Linh
23 tháng 7 2016 lúc 22:08

Bài 2

  \(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)(ĐK:a\(\ge\)8)

      \(=\frac{\sqrt{\left(a-4\right)+4\sqrt{a-4}+4}+\sqrt{\left(a-4\right)-4\sqrt{a-4}+4}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)

     \(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{1-\frac{4}{a}}\)

      \(=\sqrt{a-4}+2+\sqrt{a-4}-2:\frac{a-4}{a}\)

     \(=2\sqrt{a-4}\cdot\frac{a}{a-4}\)

     \(=\frac{2a}{\sqrt{a-4}}\)