cmr số (2021^2+2^2021) và số 2021 nguyên tố cùng nhau
chứng minh (2021^2+2^2021)và số 2021 là 2 số nguyên tố cùng nhau
1 .
CMR : ababab+ 20222021 là hợp số
2.
Cho A = 20210 = 20211 + 20212 + ..+ 20212021
a,CMR : 2020.A + 1 là một lũy thừa của 2021
b, A có là số nguyên tố ko ? vì sao
3. Tìm số nguyên tố để 4p2+1 và 6p2+1 đều là số nguyên tố
Jup mk với 30p nx mik nộp bài rồi câu nào cũng đc ạ
không tính hãy chứng tỏ A=20212+22021vàB=2021 là 2 số nguyên tó cùng nhau
2n+2021 và 2n+2023 là số nguyên tố cùng nhau. Giúp mình. Mình cần gấp.
Gọi d=ƯCLN(2n+2021;2n+2023)
=>2n+2023-2n-2021 chia hết cho d
=>2 chia hết cho d
mà 2n+2021 ko chia hết cho 2
nên d=1
=>ĐPCM
Gọi d=ƯCLN(2n+2021;2n+2023)
=>2n+2023-2n-2021 chia hết cho d
=>2 chia hết cho d
mà 2n+2021 ko chia hết cho 2
nên d=1
=>ĐPCM
CMR: \(\left(2+\sqrt{3}\right)^{2021}+\left(2-\sqrt{3}\right)^{2021}\) là số nguyên
CMR: \(A=\left(2+\sqrt{3}\right)^{2021}+\left(2-\sqrt{3}\right)^{2021}\) là số nguyên
ta có (2+\(\sqrt{3}\))^9=140452 ===> (2+\(\sqrt{3}\))^2021 là số nguyên
(2-\(\sqrt{3}\))^2021 là số thập phân gần tiến tới 0 vậy (2+\(\sqrt{3}\))^2021 +(2-\(\sqrt{3}\))^2021 k thể là số nguyên
Bài 1: Chứng minh rằng \(\frac{7^{2021}-1}{6}\) là một số tự nhiên.
Bài 2: Chứng minh rằng 20202021 - 1 và 20202021 + 1 không thể đồng thời là số nguyên tố
Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3
Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)
Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3
=> đpcm
Cho 16 số nguyên dương lớn hơn 1 và nhỏ hơn 2021 đôi một nguyên tố cùng nhau.Chứng minh 16 số trên có ít nhất 1 số là số nguyên tố
giả sử phản chứng trong 16 số đó không có số nào là số nguyên tố, tức là 16 hợp số
=> Xét một số a bất kì trong 16 số đó là hợp số => a=p.q ( \(p\le q\))
Mà \(a\le2020\Rightarrow pq\le2020\Rightarrow p\le44\)
Gọi 16 số đó lần lượt là a1, a2, ...,a15, a16 và mỗi số là hợp số nên phân tích được:
\(a1=p1.q1;a2=p2.q2;...,a16=p16.q16;pk\le qk\)
=> p1,p2,...,p16 \(\le44\)
Gọi r1, r2,..., r16 lần lượt là các ước nguyên tố của p1, p2,...,p16 => r1, r2 ...,r16\(\le44\)
Mà có 14 số nguyên tố khác nhau < 44 ( là các số: 2,3,5,7,11,13,17,19,23,29,31,37,42,43)
Theo nguyên lý Dirichlet có 16 số mà có 14 giá trị => tồn tại rx=ry ( \(1\le x;y\le16\))
=> 2 số bất kì NTCN
=> giả thiết trên sai => đpcm
Tìm 2 chữ số tận cùng của 99 mũ 89 mũ 69, 6 mũ 2021 và 14 mũ 2021 x 16 mũ 2021
Để olm giúp em nhá
(9989)69 = 996141 = (992)3070.99 = (\(\overline{..01}\))3070.99 = \(\overline{..99}\)
62021 = (65)404.6 = 7776404.6 = \(\overline{...76}.6\) = \(\overline{...56}\)
A=142022.162022=(14.16)2022=2242022= (2242)1001= \(\overline{...76}\)1001=\(\overline{...76}\)