CMR: \(A=\left(2+\sqrt{3}\right)^{2021}+\left(2-\sqrt{3}\right)^{2021}\) là số nguyên
Cho \(\left(x+\sqrt{x^2+2021}\right)\left(y+\sqrt{y^2+2021}\right)=2021\)
Tính \(x+y\)
Cho đa thức \(f\left(x\right)=ax^2+bx+2020\) có các hệ số a,b là các số hữu tỉ và \(f\left(\sqrt{3}-1\right)=2021\). Tìm a,b và tính \(f\left(1+\sqrt{3}\right)\)
Cho \(\left(x+\sqrt{x^2+\sqrt{2021}}\right)\left(y+\sqrt{y^2+\sqrt{2021}}\right)=\sqrt{2021}.\) Tính giá trị của \(A=x+y.\)
* Cho:
A= \(\left(\dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}-\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right).\left(\dfrac{\sqrt{3}-1}{3\sqrt{2}-\sqrt{6}}\right)\)
CMR: A là số nguyên
\(cmr:\left(\sqrt[3]{2}+1\right)\left(\sqrt[3]{\frac{\sqrt[3]{2}-1}{3}}\right)\)là một số nguyên.
CMR:
Q = \(\frac{1}{2+\sqrt{3}}+\sqrt{3}-1+\sqrt{\left(3+2\sqrt{2}\right).\left(3-2\sqrt{2}\right)}\)
M = \(\left(5+\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right).\sqrt{5-\sqrt{21}}\)
N = \(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{2}}-\sqrt{\sqrt{5}+1}\)
Là số nguyên.
1, CMR nếu a, b, c là các số tự nhiên đôi một nguyên tố cùng nhau thì \(\left(ab+bc+ca,abc\right)=1\)
2, CMR \(\forall n\in N\)* thì \(\dfrac{\left(17+12\sqrt{2}\right)^n-\left(17-12\sqrt{2}\right)^n}{4\sqrt{2}}\)
3, Tìm x,y∈Z:\(x^3-y^3=13\left(x^2+y^2\right)\)
cho 2 số thức dương thỏa mãn \(xy>2020x+2021y\)
chứng minh rằng \(x+y>\left(\sqrt{2020}+\sqrt{2021}\right)^2\)