Thu gọn đa thức sau :
A = \(3xy^2+2x^2y-2xy^2+xy-4xy^2+\frac{1}{5}xy+\frac{1}{4}x^2y\)
BÀI 8: THU GỌN VÀ TÌM BẬC CỦA MỖI ĐA THỨC:
A= -2xy + 3/2xy^2 + 1/2xy^2 + xy
B= xy^2z + 2xy^2z - xyz - 3xy^2z + xy^2z
C= 4x^2y^3 + x^4 - 2x^2 + 6x^4 - x^2y^3
D= 3/4xy^2 - 2xy - 1/2xy^2 + 3xy
E= 2x^2 - 3y^3 - z^4 - 4x^2 + 2y^3 + 3z^4
F= 3xy^2z + xy^2z - xyz + 2xy^2z -3xyz
0,2:x=1,03+3,97
a: A=-2xy+xy+xy^2=-xy+xy^2
Bậc là 3
b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)
Bậc là 4
c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)
Bậc là 5
d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)
bậc là 3
e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)
=-2x^2+2z^4-y^3
Bậc là 4
f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)
Bậc là 4
1. Thu gọn rồi tìm bậc của các đơn thức:
a) \(A=\left(-2x^2y^3z\right).\frac{1}{4}xy.5x^3\)
b) \(B=3x^2y+2xy^2-\frac{1}{3}x^2y+3xy^2+\frac{4}{3}x^2y-2xy^2\)
a) \(A=\left(-2x^2y^3z\right)\cdot\frac{1}{4}xy\cdot5x^3\)
\(=\left(-2\cdot\frac{1}{4}\cdot5\right)\cdot\left(x^2\cdot x\cdot x^3\right)\cdot\left(y^3\cdot y\right)\cdot z\)
\(=-\frac{5}{2}x^6y^3z\)
BẬC CỦA ĐƠN THỨC LÀ 10
\(\frac{-10}{4}\)x6y4z=\(\frac{-5}{2}\)x6y4z
Dap an cau A bn ay lm r
Cau B=4x\(^2\)y + 3xy\(^2\)
Rút gọn các biểu thức sau:
a) A= 1/3xy + 4xy - 2xy
b) B=-xy^2 + 3/2xy^2 + 4/3xy^2
c) C= (2xy)^2 + 2/3x^2y^2 - 4/3xyx
d) D= x. (3xy^2z) + 4x^2y^2z - 8x^2y . yz
a: =xy(1/3+4-2)=7/3xy
b: =xy^2(-1+3/2+4/3)=(1/3+3/2)xy^2=11/6xy^2
c: =4x^2y^2+2/3x^2y^2-4/3x^2y=-4/3x^2y+14/3x^2y^2
d: =3x^2y^2z+4x^2y^2z-8x^2y^2z=-x^2y^2z
Hãy thu gọn đa thức yeahhhhh
\(5x^2y-3xy+\frac{1}{2}x^2y-xy+5xy-\frac{1}{3}x+\frac{1}{2}+\frac{2}{3}x-\frac{1}{4}\)
\(5x^2y-3xy+\frac{1}{2}x^2y-xy+5xy-\frac{1}{3}x+\frac{1}{2}+\frac{2}{3}x-\frac{1}{4}\)
\(=\left(5x^2y+\frac{1}{2}x^2y\right)+\left(-3xy-xy+5xy\right)+\left(-\frac{1}{2}x+\frac{2}{3}x\right)+\left(\frac{1}{2}-\frac{1}{4}\right)\)
\(=\frac{11}{2}x^2y+xy+\frac{1}{6}x+\frac{1}{2}\)
a)tìm các đơn thức đồng dạng trong các đơn thứ sau
5x^2y ; 3/2(xy)^2 ; -4xy^2 ; -2xy ; 3/2x^2y
b)hãy thu gọn và tìm bậc của đơn thức: B= -2/3xy^2*(-1/2x^2y)
Bài làm:
a) Các đơn thức đồng dạng với nhau:
\(5x^2y\)và \(\frac{3}{2}x^2y\)
b) Ta có: \(B=-\frac{2}{3}xy^2.\left(-\frac{1}{2}x^2y\right)=\frac{1}{3}x^3y^3\)
=> Bậc đa thức B là 6
a) Các đơn thức đồng dạng là "
5x2y và 3/2.x2y
b) B = -2/3xy2 . (-1/2x2y)
= 1/3x3y3
Bậc của đơn thức B là 6
a.4x^2y-3xy^2+xy+xy-x^2y+5xy^2
b.x^2+2y^2+3xy+x^2-3y^2+4xy
c.2x^y-3xy+4xy^2-5x^2y+2xy^2
d.(2x^3+3x^2-4x+1)-(3x+4x^3-5)
thu gọn đơn thức, tìm bậc, hệ số.
A=\(2x^2y^2\frac{1}{4}xy\left(-3xy\right)\); B=\(\left(-\frac{3}{4}x^5y^4\right).\left(xy^2\right).\left(-\frac{8}{9}x^2y^5\right)\)
Bài 2: Rút gọn phân thức
\(A=\frac{10x^2-7+5x-2xy}{1-2x^2+x}\)
Bài 3: Chứng minh rằng
a) \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}=\frac{xy+y^2}{2x-y}\)
b) \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\frac{1}{x-y}\)
Bài 4: Quy đồng mẫu thức các phân thức sau
a) \(\frac{5x}{\left(x+3\right)^3}\&\frac{x-4}{3x\left(x+2\right)^2}\)
b) \(\frac{x+1}{x-x^2}\&\frac{x+2}{2x^2+2-4x}\)
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)
a) rút gọn biểu thức\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\) rồi tính giá trị của biểu thức tại x=5 và y=3
B) phân tích đa thức 2x-2y-x^2+2xy-y^2
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé