Chứng minh A = 1 + 4 + 42 + 43 + ......... + 4100 chia hết cho 5
Duy đâu giải đê
3) Cho S = 1 - 3 + 32 - 33 + ..... + 398 - 399
a) Tính tổng S => 3100 chia hết cho 4 dư 1
b) Chứng minh S chia hết cho (-20)
c) Tìm số dư khi chia S cho 9
4) Với giá trị nào của x,y thì biểu thức:
A = giá trị tuyệt đối của x - y + ( x - 3)2 + 1 có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
5) Cho A = 4 - 42 + 43 - 44 + .... + 499 - 4100
a) Tìm tổng A
b) Chứng minh A chia hết cho (-12) ; A không chia hết cho 16
c) Tìm chữ số tận cùng của 5A
3) Cho S = 1 - 3 + 32 - 33 + ..... + 398 - 399
a) Tính tổng S => 3100 chia hết cho 4 dư 1
b) Chứng minh S chia hết cho (-20)
c) Tìm số dư khi chia S cho 9
4) Với giá trị nào của x,y thì biểu thức:
A = giá trị tuyệt đối của x - y + ( x - 3)2 + 1 có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
5) Cho A = 4 - 42 + 43 - 44 + .... + 499 - 4100
a) Tìm tổng A
b) Chứng minh A chia hết cho (-12) ; A không chia hết cho 16
c) Tìm chữ số tận cùng của 5A
cho A = 1+4+42+43+44+45+46+47+48 . Chứng minh A chia hết cho 3
Ta có: `A = 1 + 4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6 + 4^7 + 4^8`
`= (1 + 4 + 4^2) + (4^3 + 4^4 + 4^5) + (4^6 + 4^7 + 4^8)`
`= 21 + 4^3 (1 + 4 + 4^2) + 4^6 (1 + 4 + 4^2)`
`= 21 + 4^3 . 21 + 4^6 . 21`
`= 21 (1 + 4^3 + 4^6)`
Vì \(21\left(1+4^3+4^6\right)⋮3\) nên \(A⋮3\)
Cho A = 4 + 42 + 43 +¼+ 423 + 424 . Chứng minh: A chia hết 20; A chia hết 21; A chia hết 420 .
Cho A = 1 + 4 + 42 + 43 +...+499, B = 4100 CMR A < B/3
\(\Rightarrow4A=4+4^2+4^3+...+4^{100}\\ \Rightarrow4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\\ \Rightarrow3A=4^{100}-1< 4^{100}=B\\ \Rightarrow A< \dfrac{B}{3}\)
Chứng minh rằng: D = 1 + 4 + 4 2 + 4 3 + . . . + 4 58 + 4 59 chia hết cho 21
D = 1 + 4 + 4 2 + 4 3 + . . . + 4 58 + 4 59
= 1 + 4 + 4 2 + 4 3 + 4 4 + 4 5 + ... + 4 57 + 4 58 + 4 59
= 1 + 4 + 4 2 + 4 3 . 1 + 4 + 4 2 + ... + 4 57 . 1 + 4 + 4 2
= 21 + 21 . 4 3 + . . . + 21 . 4 57 ⋮ 21
Chứng minh rằng: D = 1 + 4 + 4 2 + 4 3 + . . . + 4 58 + 4 59 chia hết cho 21.
cho A = 1+4+42+...+49 , B =4100 chứng minh rằng A < B/3
A=\(\frac{\left(49+1\right).49}{2}=1225\)
B/3=4100/3=1336,6666666666666....
Từ trên ta suy ra A<B/3
Bài 1. So sánh: \(2^{49}\) và \(5^{21}\)
Bài 2. a, Chứng minh rằng S = 1 + 3 + 32 + 33 + ... + 399 chia hết cho 40.
b, Cho S = 1 + 4 + 42 + 43 + ... + 462. Chứng minh rằng S chia hết cho 21.
Giúp mk với
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)