Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Anh Quân
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2022 lúc 18:48

Gọi \(H\left(x;y\right)\) là trực tâm tam giác

\(\Rightarrow\overrightarrow{AH}=\left(x+3;y\right)\) ; \(\overrightarrow{BH}=\left(x-3;y\right)\)\(\overrightarrow{BC}=\left(-1;6\right)\) ; \(\overrightarrow{AC}=\left(5;6\right)\)

Do H là trực tâm tam giác \(\Rightarrow\left\{{}\begin{matrix}AH\perp BC\\BH\perp AC\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-\left(x+3\right)+6y=0\\5\left(x-3\right)+6y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-x+6y=3\\5x+6y=15\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{5}{6}\\\end{matrix}\right.\) \(\Rightarrow H\left(2;\dfrac{5}{6}\right)\)

duong duong
Xem chi tiết
Phan Trí Bằng
18 tháng 8 2021 lúc 15:29

mk ko thấy đề

 

hay hay
Xem chi tiết
Trần Minh Đức
Xem chi tiết
oki pạn
21 tháng 1 2022 lúc 18:25

a. n=1

b.n=-1

Đinh Đức Anh
21 tháng 1 2022 lúc 18:48

a. n=1

b.n=-1

tick cho mk

nguyễn trà my
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2022 lúc 18:09

a: Để A là phân số thì 2n+3<>0

hay n<>-3/2

b: Để A nguyên thì \(2n+3\in\left\{1;-1;17;-17\right\}\)

hay \(n\in\left\{-1;-2;7;-10\right\}\)

Nguyễn Hoàng Minh
7 tháng 1 2022 lúc 18:17

\(a,\Rightarrow2n+3\ne0\Rightarrow n\ne-\dfrac{2}{3}\\ b,A\in Z\Rightarrow A=\dfrac{6\left(2n+3\right)-17}{2n+3}=6-\dfrac{17}{2n+3}\in Z\\ \Rightarrow2n+3\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\\ \Rightarrow2n\in\left\{-20;-4;-2;14\right\}\\ \Rightarrow n\in\left\{-10;-2;-1;7\right\}\left(tm\right)\)

Nguyễn Minh Đức
Xem chi tiết
Lê Ánh Linh
Xem chi tiết
Nguyễn Hoàng Nam
Xem chi tiết
Ngô Quang Sinh
1 tháng 6 2018 lúc 2:31

Đáp án C.

Dựa trên tính toán độ âm điện của các hợp chất. Ý A :H2S, ý B: BeCl2, ý D có AlCl3 là các chất có liên kết ion.

Bee Đoàn
Xem chi tiết
Nguyễn mạnh dũng
Xem chi tiết
Thắng Nguyễn
11 tháng 1 2017 lúc 20:46

Áp dụng BĐT Bunhiacopski ta có:

\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=3^2=9\)

\(\Rightarrow x^2+y^2+z^2\ge3\Rightarrow A\ge3\)

Dấu "=" xảy ra khi x=y=z=1

Vậy MinA=3 khi x=y=z=1

Trần Quốc Đạt
12 tháng 1 2017 lúc 22:39

(Bạn Thắng Nguyễn, đề yêu cầu tìm \(max\) mà...)

Đây là bài bất đẳng thức khó, vì \(maxA=5\) và đẳng thức xảy ra tại \(x=0,y=1,z=2\) (chẳng có BĐT nào làm được hết).

Lời giải đây: Đặt \(A=f\left(x,y,z\right)=x^2+y^2+z^2\) (coi như đa thức 3 biến)

Trong \(x,y,z\) phải có số lớn hơn hoặc bằng 1, giả sử là \(x\). Khi đó \(y+z\le2\).

\(f\left(x,y+z,0\right)=x^2+\left(y+z\right)^2\ge x^2+y^2+z^2=f\left(x,y,z\right)\)

Mà \(f\left(x,y+z,0\right)=f\left(x,3-x,0\right)=x^2+\left(3-x\right)^2=2x^2-6x+9\)

Và biểu thức này đạt giá trị lớn nhất tại \(x=2\) (giải thích: \(2x^2-6x+9=2\left|x-\frac{3}{2}\right|^2+\frac{9}{2}\))

Nên \(f\left(x,y,z\right)\le f\left(2,1,0\right)=5\). Đẳng thức xảy ra tại \(x=2,y=1,z=0\).

Thắng Nguyễn
3 tháng 2 2017 lúc 22:13

ấy chết, rảnh rỗi lật lại ms ngộ ra

bài này ngoài ra còn có thể sd BĐT karamata sẽ dễ nhìn hơn