Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kaneki Ghoul
Xem chi tiết
ANH HOÀNG
Xem chi tiết
Nguyễn Hoàng Minh
18 tháng 9 2021 lúc 13:40

\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{49\cdot50}\\ =1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{49}+\dfrac{1}{50}\)

 

hoàng quỳnh  dương
Xem chi tiết
Hoàng Phúc
18 tháng 3 2016 lúc 20:34

\(A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)

Vậy A=49/50

Công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Nguyễn Tuấn Khải
Xem chi tiết
Nguyễn Ngọc Quý
30 tháng 4 2015 lúc 17:04

Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

Vì \(\frac{49}{50}

Tâm Lê
Xem chi tiết
Adorable Angel
8 tháng 4 2017 lúc 8:38

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}< 1\)

Ta có: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}< 1\)

=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}< 1\)

= \(\dfrac{1}{1}-\dfrac{1}{50}< 1\)

= \(\dfrac{50}{50}+\dfrac{-1}{50}< 1\)

= \(\dfrac{49}{50}< 1\)

Vậy \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}< 1\)

Sầu Thiên Thu
8 tháng 4 2017 lúc 8:37

1/1.2 = 2 đã lớn hơn 1 rồi @@

Lysandra
Xem chi tiết
trần phạm tiểu băng
Xem chi tiết
Đinh Đức Hùng
20 tháng 4 2017 lúc 20:31

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\) (đpcm)

Thanh Tùng DZ
20 tháng 4 2017 lúc 20:31

ta có :

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}< 1\)

trần phạm tiểu băng
21 tháng 4 2017 lúc 6:40

thanks mấy bạn nhiều lắm ^^

Đặng Phương Nghi
Xem chi tiết
Nguyễn Phương Anh
29 tháng 2 2016 lúc 20:18

Phần chứng tỏ quy đồng lên rồi tính là ra

Còn phần tính S thì áp dụng tính chất vừa chứng tỏ để tách ra

Kết quả là 49/50

trần thanh tùng
19 tháng 4 2016 lúc 17:50

49/50

Nguyễn Lê Huy Hoàng
Xem chi tiết
ngo thuy linh
1 tháng 4 2016 lúc 9:48

ta có : 1/1.2+1/2.3+1/3.4+1/4.5+....+1/49.50

= 1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.....+1/49-1/50

=1/1-1/50

= 49/50

Nguyễn Xuân Sáng
1 tháng 4 2016 lúc 9:44

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}-\frac{1}{50}\)

\(=\frac{49}{50}\)

ngo thuy linh
1 tháng 4 2016 lúc 9:45

ta có : 1/1.2+1/2.3+1/3.4+1/4.5+....+1/49.50

= 1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+....+1/49-1/50

=1/1-1/50

=49/50