Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ho thi to uyen
Xem chi tiết
Nguyễn Thị Thu Hiền
26 tháng 9 2015 lúc 13:19

thật ko vậy thành nguyễn ???

nguyenthitulinh
Xem chi tiết
Hồ Phạm Anh Nguyễn
7 tháng 4 2015 lúc 20:33

Ta có nhận xét sau :  |x - y| và (x - y) có cùng tính chẵn lẻ 

Mà (x - y) và (x + y) có cùng tính chẵn lẻ  nên |x - y| và (x + y) có cùng tính chẵn lẻ

Do đó |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x+ y) + (y + z) + (z + x) 

mà  (x+ y) + (y + z) + (z + x) = 2.(x+ y + z) là số chẵn nên |x - y| + |y - z| + |z - x|  là số chẵn . Vậy |x - y| + |y - z| + |z - x|  = 2013 không xảy ra nhé

Trần Thị Loan
7 tháng 4 2015 lúc 14:00

Ta có nhận xét sau :  |x - y| và (x - y) có cùng tính chẵn lẻ 

Mà (x - y) và (x + y) có cùng tính chẵn lẻ  nên |x - y| và (x + y) có cùng tính chẵn lẻ

Do đó |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x+ y) + (y + z) + (z + x) 

mà  (x+ y) + (y + z) + (z + x) = 2.(x+ y + z) là số chẵn nên |x - y| + |y - z| + |z - x|  là số chẵn . Vậy |x - y| + |y - z| + |z - x|  = 2013 không xảy ra.

Hồ Anh Khôi
8 tháng 4 2015 lúc 20:08

Ta có nhận xét sau :  |x - y| và (x - y) có cùng tính chẵn lẻ 

Mà (x - y) và (x + y) có cùng tính chẵn lẻ  nên |x - y| và (x + y) có cùng tính chẵn lẻ

Do đó |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x+ y) + (y + z) + (z + x) 

mà  (x+ y) + (y + z) + (z + x) = 2.(x+ y + z) là số chẵn nên |x - y| + |y - z| + |z - x|  là số chẵn . Vậy |x - y| + |y - z| + |z - x|  = 2013 

Oo
Xem chi tiết
Le Thi Khanh Huyen
7 tháng 4 2015 lúc 21:12

Ta có nhận xét sau :  |x - y| và (x - y) có cùng tính chẵn lẻ 

Mà (x - y) và (x + y) có cùng tính chẵn lẻ  nên |x - y| và (x + y) có cùng tính chẵn lẻ

Do đó |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x+ y) + (y + z) + (z + x) 

mà  (x+ y) + (y + z) + (z + x) = 2.(x+ y + z) là số chẵn nên |x - y| + |y - z| + |z - x|  là số chẵn . Vậy |x - y| + |y - z| + |z - x|  = 2013 không xảy ra nhé

đỗ ngọc ánh
Xem chi tiết
Thanh Tùng DZ
20 tháng 5 2018 lúc 14:45

Câu hỏi của An Thi Yen Nhi - Toán lớp 7 - Học toán với OnlineMath

Phạm Thị Anh Thư
Xem chi tiết
Phạm Thị Anh Thư
Xem chi tiết
Phạm Nguyễn Nhã Uyên
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 10 2021 lúc 17:41

Ta có:

\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+0}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2\left(x+y+z\right)}{xyz}}\)

\(=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\) là số hữu tỉ

Rhider
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
HT2k02
14 tháng 4 2023 lúc 18:01

1. Ta chọn $x=3k;y=4k;z=5k$ với $k$ là số nguyên dương.

Khi này $x^2+y^2=25k^2 =z^2$. Tức có vô hạn nghiệm $(x;y;z)=(3k;4k;5k)$ với $k$ là số nguyên dương thỏa mãn

HT2k02
14 tháng 4 2023 lúc 18:03

Câu 2:

Chọn $x=y=2k^3; z=2k^2$ với $k$ nguyên dương.

Khi này $x^2+y^2 =8k^6 = z^3$.

Tức tồn tại vô hạn $(x;y;z)=(2k^3;2k^3;2k^2) $ với $k$ nguyên dương là nghiệm phương trình.

Anh dam ngoc
16 tháng 4 2023 lúc 12:31

Câu 2:

Chọn x=y=2k3;z=2k2 với knguyên dương.

Khi này x2+y2=8k6=z3.

Tức tồn tại vô hạn (x;y;z)=(2k3;2k3;2k2) với k nguyên dương là nghiệm phương trình.