Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
meo con
Xem chi tiết
Lê Nguyên Hạo
20 tháng 8 2016 lúc 20:23

Bài 1: \(\left(5n+2\right)^2-4=\left(25n^2+2.2.5n+2^2\right)-4=25n^2+20n+4-4\)

\(=25n^2+20n=5n\left(5n+4\right)\)

Có \(5n\left(5n+4\right)⋮5\) (có cơ số 5n)

=> \(\left(5n+2\right)^2-4⋮5\)

Bài 2: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Đây là tích ba số tự nhiên liên tiếp nên chia hết cho 3.

Vậy: \(n^3-n⋮3\)

Bài 3: \(x^2\left(x-3\right)+12-4x=0\)

\(\Leftrightarrow x^2\left(x-3\right)+4\left(3-x\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow x^2=4,x=3\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\\x=3\end{array}\right.\)

Edowa Conan
20 tháng 8 2016 lúc 20:23

Câu 1:

Ta có:(5n+2)2-4=25n2+20n+4-4

                         =5.5n2+5.4n

                         =5.(5n2+4n)

       Vì 5.(5n2+4n) chia hêt cho 5

Suy ra:(5n+2)2-4

Câu 2:

Ta có:

n3-n=n.n2-n

       =n.(n2-1)

      =(n-1).n.(n+1)

       Vì (n-1);n và (n+1) là ba số tự nhiên liên tiếp

 Mà (n-1).n.(n+1) chia hết cho 3(1)

              Và (n-1).(n+1) chia hêt cho 2(2)

Từ (1) và (2) suy ra:(n-1).n.(n+1) chia hết cho 6

 

Hoàng Lê Bảo Ngọc
20 tháng 8 2016 lúc 20:17

Bài 1. \(\left(5n+2\right)^2-4=\left(5n+2\right)^2-2^2=5n.\left(5n+4\right)\) luôn chia hết cho 5 với mọi số nguyên n.

Bài 2. \(n^3-n=n\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right)\)

Nhận thấy tích trên gồm ba số nguyên liên tiếp nên chia hết cho cả 2 và 3

Mà (2,3) = 1 => Tích trên chia hết cho 6

Đỗ Vũ Nam
Xem chi tiết
Akai Haruma
19 tháng 8 2023 lúc 23:25

Bài 2:

Với $n$ chẵn thì $n+4$ chẵn

$\Rightarrow (n+4)(n+7)$ là số chẵn

Với $n$ lẻ thì $n+7$ chẵn

$\Rightarrow (n+4)(n+7)$ là số chẵn

Vậy $(n+4)(n+7)$ chẵn với mọi số tự nhiên $n$ (đpcm)

Akai Haruma
19 tháng 8 2023 lúc 23:27

Bài 3:

a. 

$101\vdots x-1$

$\Rightarrow x-1\in\left\{\pm 1; \pm 101\right\}$

$\Rightarrow x\in\left\{0; 2; 102; -100\right\}$

Vì $x\in\mathbb{N}$ nên $x=0, x=2$ hoặc $x=102$

b.

$a+3\vdots a+1$

$\Rightarrow (a+1)+2\vdots a+1$
$\Rightarrow 2\vdots a+1$

$\Rightarrow a+1\in\left\{\pm 1; \pm 2\right\}$

$\Rightarrow a\in\left\{0; -2; 1; -3\right\}$
 

Giang NguyễnThu
Xem chi tiết
Phạm Hồ Thanh Quang
9 tháng 6 2017 lúc 12:45

   n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= -5n
= (-1).5n \(⋮5\)
   (n - 1)(3 - 2n) - n (n + 5)
= 3n - 2n2 - 3 + 2n - n2 - 5n
= -3n2 - 3
= 3(- n2 - 1)\(⋮3\)

phạm hoài thanh thanh
13 tháng 9 2017 lúc 21:00

Bằng 3(-n^2-1) 

Ls

No name
Xem chi tiết
Bò Vinamilk 3 không (Hộ...
19 tháng 8 2019 lúc 22:21

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

Pham Viet
Xem chi tiết
Vũ Diệu Linh
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 19:44

Đây là tích 4 số nguyên liên tiếp nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)

Mà 24 chia hết cho 3 và 8 nên n(n+1)(n+2)(n+3) chia hết cho 3 và 8

Hoàng Khánh Linh
Xem chi tiết
Nguyễn Thị Như Hoa
9 tháng 2 2018 lúc 20:54

a) (n mũ 2+n) chia hết cho 2 

=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2

Hiếu
9 tháng 2 2018 lúc 20:51

\(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm

Hiếu
9 tháng 2 2018 lúc 20:53

\(n^2+n+3=n\left(n+1\right)+3\)

Vì n(n+1) chia hết cho 2 => số cuối là số chẵn => n(n+1) + 3 có số cuối là số lẻ 

Vậy n^2+n+3 ko chia hết cho 2

Phạm Hải Việt
Xem chi tiết
Nguyễn Lê Bảo Ngọc
19 tháng 12 2021 lúc 22:01

a, ( n + 2 ) chia hết cho 2

( n + 1 + 2 ) chia hết cho 3

b, ( KO BIẾT )

Khách vãng lai đã xóa
Nguyễn Thị Khánh Huyền
Xem chi tiết