Cho mình hỏi bài này với ạ:
Tìm a,b nguyên dương sao cho:
3^(3a)+3^(2a+1)+3^(a+1) = b^3+2b^2+6b
bài 3 : với a,b,c thuộc R thỏa mãn : (3a+3b+3c)^3 =24+(3a+b-c)+(3b+c-a)^3 +(3c+a-b)^3
CM : (a+2b)(b+2c)(c+2a)=1
bài 4 : CM với n là số nguyên dương thì : 5^n(5^n+3^n)-2^n(9^n+11^n) chia hết cho 21
3. Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath
cho 2 đa thức
A(x) = 1/3(x^3-6x^4+3x^2-1) + 2(x^2-x^5+x)
B(x) = x^6-4x^5+2x^2+x^3+2/3
a, tính a(x)+b(x), 2a(x)-b(x), 3a(x)-6b(x)
b, tính a(4), a(-1), b(2), a(-1)-2b(1)
Mấy anh chị ơi cho em hỏi câu này ạ:
Tìm bộ 3 số nguyên tố a,b,c sao cho a^2+b^2+c^2=abc
Mấy anh chị ơi cho em hỏi câu này ạ:
Tìm bộ 3 số nguyên tố a,b,c sao cho a^2+b^2+c^2=abc
Cho a, b, c dương. CMR: \(\dfrac{2a^2+3b^2}{2a^3+3b^3}+\dfrac{2b^2+3a^2}{2b^3+3a^3}\le\dfrac{4}{a+b}\)
\(\dfrac{4}{a+b}-\dfrac{2a^2+3b^2}{2a^3+3b^3}-\dfrac{2b^2+3a^2}{2b^3+3a^3}=\dfrac{\left(a-b\right)^2.\left(12b^4+12ab^3-a^2b^2+12a^3b+12a^4\right)}{\left(a+b\right)\left(2a^3+3b^3\right)\left(2b^3+3a^3\right)}\ge0\)
PS: Còn cách dùng holder nữa mà lười quá
holder Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath
Cho a, b là các số dương. CMR: \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\le\frac{4}{a+b}\)
Ta có: \(\frac{2a^2+3b^2}{2a^3+3b^3}\left(a+b\right)=1+ab\frac{2a+3b}{2a^3+3b^3}\)
Áp dụng BĐT Holder ta có:
\(\left(2a^3+3b^3\right)\left(2+3\right)^2\ge\left(2a+3b\right)^3\)
Vậy ta có thể viết lại BĐT cần chứng minh như sau;
\(VT\left(a+b\right)\le2+25ab\left(\frac{1}{\left(2a+3b\right)^2}+\frac{1}{\left(2b+3a\right)^2}\right)\)
Nó đủ để ta có thể thấy rằng
\(25ab\left[\left(2b+3a\right)^2+\left(2a+3b\right)^2\right]\le2\left(2a+3b\right)^2\left(2b+3a\right)^2\)
\(\Leftrightarrow59\left(a^2-b^2\right)^2+13\left(a^4+b^4-a^3b-ab^3\right)\ge0\)
BĐT cuối cùng đúng nên ta có ĐPCM
Đặt \(\frac{a}{b}=t\)do a>0, b>0 nên t>0
Khi đó BĐT \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2}{3b^3}+\frac{2b^2+3a^2}{2b^3+3a^2}\le\frac{4}{a+b}\left(1\right)\)trở thành
\(\frac{2t^2+3}{2t^3+3}+\frac{2+3t^2}{3+3t^3}\le\frac{4}{t+1}\)
\(\Leftrightarrow\left(2t^2+3\right)\left(2+3t^2\right)\left(t+1\right)+\left(2+3t^2\right)\left(2t^2+1\right)\left(t+1\right)\le4\left(2t^3+3\right)\left(2+3t^2\right)\)
\(\Leftrightarrow\left(t+1\right)\left(12t^5+13t^3+13t^2+12\right)\le4\left(6t^6+13t^3+6\right)\)
\(\Leftrightarrow12\left(t^6-t^5-t+1\right)-13t^2\left(t^2-12t+1\right)\ge0\)
\(\Leftrightarrow12\left(t-1\right)^2\left[12\left(t^4+t^3+t^2+t+1\right)-13t^2\right]\ge0\)
\(\Leftrightarrow\left(t-1\right)^2\left[12\left(t^4+t^3+t^2+t+1\right)-13t^2\right]\ge0\left(2\right)\)
Ta có \(12\left(t^4+t^3+t^2+t+1\right)-13t^2=12t^4+12t\left(t-1\right)^2+23t^2+12>0\forall t>0\)
BĐT (2) đúng với mọi t>0
=> BĐT (1) đúng với mọi a,b>0
Dấu "=" xảy ra <=> t=1 <=> a=b
Cho a,b là các số dương. Chứng minh rằng: \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\le\frac{4}{a+b}\)
Cho a,b là các số dương. CMR:
\(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\le\frac{4}{a+b}\)
Bài 19: Tìm a biết
1) a + b – c = 18 với b = 10 ; c = -9
2) 2a – 3b + c = 0 với b = -2 ; c = 4
3) 3a – b – 2c = 2 với b = 6 ; c = -1
4) 12 – a + b + 5c = -1 với b = -7 ; c = 5
5) 1 – 2b + c–3a = -9 với b = -3 ; c = -7
GIẢI DC MÌNH TICK CHO
1) Thay b= 10; c = -9 vào biểu thức, ta có:
\(a+10-\left(-9\right)=18\)
\(a=18-10-9\)
\(a=-1\)
2) Thay b = -2; c= 4 vào biểu thức ta có:
\(2a-3.\left(-2\right)+4=0\)
\(2a+10=0\)
\(2a=-10\)
\(a=-5\)
3) Thay b = 6; c= -1 vào biểu thức ta có:
\(3a-6-2.\left(-1\right)=2\)
\(3a-4=2\)
\(3a=6\)
\(a=2\)
b) Thay b = -7; c= 5 vào biểu thức ta có:
\(12-a+\left(-7\right)+5.5=-1\)
\(12-a+18=-1\)
\(12-a=-19\)
\(a=-7\)
5) Thay b = -3; c= -7 vào biểu thức ta có:
\(1-2.\left(-3\right)+\left(-7\right)-3a=-9\)
\(-3a=-9\)
\(a=3\)
hok tốt!!