A=1+2+2\(^2\)+2\(^3\)+2\(^4\)+...+2\(^{99}\)
chứng minh rằng: A không chia hết cho 7
A=1+2+2^2+2^3+2^4+...+2^99 chứng minh A KHÔNG CHIA HẾT cho 7
Chứng minh rằng : a, M = 21^9+21^8+21^7 +....+ 21+1 chia hết cho 2 và 5 b, N = 6+6^2+6^3 +....+ 6^2020 chia hết cho 7 nhưng không chia hết cho 9 c, P = 4+4^2+4^3 +....+ 4^23+4^24 chia hết cho 20 và 21 d, Q = 6+6^2+6^3 +....+ 6^99 chia hết cho 43
Hộ mình làm bài này nhá :))))))))
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
Chứng minh A không chia hết cho 7 :A= 2+2^2+2^3+2^4+........+2^99+2^100
Đáng ra đề phải là chứng minh A chia hết cho 7 mới đúng nhé!
Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^5\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{98}\right)⋮7^{\left(đpcm\right)}\)
Chứng minh rằng A không chia hết cho 7
A=2+22+23+24+.......+299+2100
đề phải là A bằng :1+2+...+2mũ 100 chứ bạn
A = 2 + 22+ 23+........+ 2100
2A = 2. ( 2 + 22+23+..........+ 2100)
2A = 2.2+ 2.22+2.23+.........+ 2.2100
2A = 22+23+24+........+2101
2A - A = ( 2 2+ 23 +24+.........+ 2 101) - ( 2 + 22+23 .......+ 2100)
A = 2 101- 2
cho A=2^1+2^2+2^3+...+2^99+2^100. Chứng minh rằng A chia hết cho 3 ;15;31 nhưng không chia hết cho 7 và tìm số dư của A khi chia cho 7
* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\) có \(100\) số hạng
và \(100⋮2;4;5\) và \(100⋮̸3\)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\) (vì \(100⋮2\) )
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{99}.3=3.\left(2+2^3+...+2^{99}\right)⋮3\)
vậy \(A\) chia hết cho \(3\) (1)
* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2^1+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(+2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮4\) )
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=2\left(1+2+4+8\right)+2^5\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)
\(=2.15+2^5.15+...+2^{97}.15=15.\left(2+2^5+...+2^{97}\right)⋮15\)
vậy \(A\) chia hết cho \(15\) (2)
* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2^1+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮5\) )
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)
\(=2.31+2^6.31+...+2^{96}.31=31.\left(2+2^6+...+2^{96}\right)⋮31\)
vậy \(A\) chia hết cho \(31\) (3)
* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(=2^1+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮̸3\) )
\(=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(=2+2^2\left(1+2+4\right)+...+2^{98}\left(1+2+4\right)\)
\(=2+2^2.7+...+2^{98}.7=2+7\left(2^2+...+2^{98}\right)\)
ta có : \(7\left(2^2+...+2^{98}\right)⋮7\) nhưng \(2⋮̸7\)
vậy \(A\) không chia hết cho \(7\) và số \(2< 7\)
nên số 2 là số dư khi \(A\) chia cho \(7\) (4)
từ (1);(2);(3) và (4) \(\Rightarrow\) (ĐPCM)
Chứng minh rằng
a.5^1 - 5^9 + 5^8 chia hết cho 7
b.6 + 6^2 + 6^3 + 6^4 + .........+ 6^9 + 6^10 chia hết cho 7
c.1+2+3+3^2+3^3+....+3^99 chia hết cho 4
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)
\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)
\(5^1-5^9+5^8=5\left(1-5^8+5^7\right)⋮7\Leftrightarrow5^8-5^7-1⋮7\)
\(5\equiv-2\left(mod7\right)\Rightarrow5^3\equiv-1\left(mod7\right)\Rightarrow5^8\equiv4\left(mod7\right);5^7\equiv-2\left(mod7\right)\)
\(5^8-5^7-1\equiv5\left(mod7\right):v\)
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+\cdot\cdot\cdot+6^9\right)\)
\(⋮7\)
Cho A=2+2^2+2^3+2^4+....+2^99+2^100, chứng minh rằng A chia hết cho 3, A chia hết cho 6, A chia hết cho 31
\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)
\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)
\(A=2\cdot3+...+2^{99}\cdot3\)
\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)
2 ý kia tương tự
Giải:
Đặt S=(2+2^2+2^3+...+2^100)
=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296
=2.31+26.31+...+296.31
=31.(2+26+...+296)\(⋮\)31
Ta có :
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
=> \(A=(2+2^2)+(2^3+2^4)+...+(2^{99}+2^{100})\)
=> \(A=2(1+2)+2^3(1+2)+...+2^{99}(1+2)\)
=> \(A=2.3+2^3.3+...+2^{99}.3\)
=> \(A=(2+2^3+...+2^{99}).3\)chia hết cho 3 ( 1 )
Ta lại có :
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
=> \(A=2(1+2+2^2+2^3+...+2^{98}+2^{99})\)chia hết cho 2 ( 2 )
Từ ( 1 ) và ( 2 ) ta có :
A chia hết cho 2 . 3 hay A chia hết cho 6
Ta có :
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
=> \(A=\left(2+2^2+2^3+2^4+2^5\right)+....\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
=> \(A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
=> \(A=2.31+...+2^{96}.31\)
=> \(A=\left(2+...+2^{96}\right)31\)chia hết cho 31
a) Cho A = 2^1 + 2^2 + 2^3 + ....... + 2^99 + 2^100 . Chứng minh rằng A chia hết cho 3;15;31 nhưng không chia hết cho 7 và tìm số dư của A khi chia cho 7.
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\) (có 100 con số trong phép cộng)
ta có : \(100\) chia hết cho \(2;4;5\) và không chia hết cho \(3\) ; \(100\) chia \(3\) dư 2 (*)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\) (vì (*))
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^{99}.3=3\left(2+2^3+...+2^{99}\right)⋮3\)
\(\Rightarrow A\) chia hết cho \(3\) (1)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(A=\left(2^1+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì (*))
\(A=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(A=2\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)
\(A=2.15+...+2^{97}.15=15\left(2+...+2^{97}\right)⋮15\)
\(\Rightarrow A\) chia hết cho \(15\) (2)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(A=\left(2^1+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{99}\right)\)(vì(*))
\(A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(A=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)
\(A=2.31+...+2^{96}.31=31\left(2+...+2^{96}\right)⋮31\)
\(\Rightarrow A\) chia hết cho \(31\) (3)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(A=2+2^2+\left(2^3+2^4+2^5\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\) (vì (*))
\(A=2+2^2+2^3\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(A=2+4+2^3\left(1+2+4\right)+...+2^{98}\left(1+2+4\right)\)
\(A=6+2^3.7+...+2^{98}.7\)
\(A=6+7\left(2^3+...+2^{98}\right)\)
ta có : \(7\left(2^3+...+2^{98}\right)⋮7\) nhưng \(6\) không trùng với \(7\)
\(\Rightarrow A\) không chia hết cho \(7\) và \(6< 7\) \(\Rightarrow\) \(6\) là số dư khi \(A\) chia cho \(7\) (4)
từ (1);(2);(3)và(4) ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
chia hết cho \(3;15;31\) nhưng không chia hết cho \(7\) và số dư của \(A\) chia \(7\) là \(6\) (đpcm)
CHO A=2^1+2^2+2^3+. . . . .2^99+2^100.Chứng minh rằng A ko chia hết cho 7 và tìm số dư của a khi chia cho 7
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100)
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100)
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2