Đại số lớp 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nam Lee

a) Cho A = 2^1 + 2^2 + 2^3 + ....... + 2^99 + 2^100 . Chứng minh rằng A chia hết cho 3;15;31 nhưng không chia hết cho 7 và tìm số dư của A khi chia cho 7.

Mysterious Person
27 tháng 8 2017 lúc 17:53

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\) (có 100 con số trong phép cộng)

ta có : \(100\) chia hết cho \(2;4;5\) và không chia hết cho \(3\) ; \(100\) chia \(3\) dư 2 (*)

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\) (vì (*))

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(A=2.3+2^3.3+...+2^{99}.3=3\left(2+2^3+...+2^{99}\right)⋮3\)

\(\Rightarrow A\) chia hết cho \(3\) (1)

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(A=\left(2^1+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì (*))

\(A=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(A=2\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)

\(A=2.15+...+2^{97}.15=15\left(2+...+2^{97}\right)⋮15\)

\(\Rightarrow A\) chia hết cho \(15\) (2)

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(A=\left(2^1+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{99}\right)\)(vì(*))

\(A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(A=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)

\(A=2.31+...+2^{96}.31=31\left(2+...+2^{96}\right)⋮31\)

\(\Rightarrow A\) chia hết cho \(31\) (3)

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(A=2+2^2+\left(2^3+2^4+2^5\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\) (vì (*))

\(A=2+2^2+2^3\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)

\(A=2+4+2^3\left(1+2+4\right)+...+2^{98}\left(1+2+4\right)\)

\(A=6+2^3.7+...+2^{98}.7\)

\(A=6+7\left(2^3+...+2^{98}\right)\)

ta có : \(7\left(2^3+...+2^{98}\right)⋮7\) nhưng \(6\) không trùng với \(7\)

\(\Rightarrow A\) không chia hết cho \(7\)\(6< 7\) \(\Rightarrow\) \(6\) là số dư khi \(A\) chia cho \(7\) (4)

từ (1);(2);(3)và(4) ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

chia hết cho \(3;15;31\) nhưng không chia hết cho \(7\) và số dư của \(A\) chia \(7\)\(6\) (đpcm)


Các câu hỏi tương tự
Nguyễn Thị Khánh Linh
Xem chi tiết
Nguyễn Thị Kiều Trang
Xem chi tiết
Nguyễn Thị Khánh Linh
Xem chi tiết
Mèo Mun
Xem chi tiết
Lương Khánh Huyền
Xem chi tiết
H. Nhiên Phạm
Xem chi tiết
Phùng Thu Hương
Xem chi tiết
Nữ hoàng lạnh lùng
Xem chi tiết
Linh Luna
Xem chi tiết