Tìm nghiệm: 4x^2+12x+9
Tìm nghiệm của đa thức : 4x2+12x+9
tìm tất cả các giá trị của tham số a để phương trình x^4-4x^3-2x^2+12x+9-a=0 có 2 nghiệm pb
Ta có: \(\Delta=b^2-4ac=\left(-12\right)^2-4.4.9=144-144=0\)
Vì \(\Delta=0\)nên pt có 2 nghiệm kép
\(x_1=x_2=\frac{-b}{2a}=\frac{12}{2.4}=\frac{3}{2}\)
Vậy ......
tìm gtnn
\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}=\left|2x-1\right|+\left|2x-3\right|=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=2\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi \(\left(2x-1\right)\left(3-2x\right)\ge0\)
\(\Leftrightarrow\dfrac{1}{2}\le x\le\dfrac{3}{2}\)
Cho H(x)=\(-4x^3+9x^2-12x+9\)
Chứng minh x=-1 là nghiệm của đa thức H(x)
giả sử \(H\left(-1\right)=0\)
\(-4.\left(-1\right)^3+9.\left(-1\right)^2-12.\left(-1\right)+9=0\)
\(4+9+12+9=0\)
\(34=0\left(vl\right)\)
vậy x= - 1 ko phải nghiệm của M(x)
\(\text{Thay x=-1 vào biểu thức H(x),ta được:}\)
\(H\left(x\right)=\left(-4\right).\left(-1\right)^3+9.\left(-1\right)^2-12.\left(-1\right)+9\)
\(H\left(x\right)=4+9-\left(-12\right)+9\)
\(H\left(x\right)=13-\left(-12\right)+9\)
\(H\left(x\right)=25+9=34\)
\(\text{Vậy x=-1 không phải là nghiệm của đa thức H(x)}\)
phương trình \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=-4x^2-4x+6\) có nghiệm là ?
Tìm MinA=\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x-9}\)
P/s : sửa đề
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(A=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(A=\left|2x-1\right|+\left|2x-3\right|\)
\(A=\left|1-2x\right|+\left|2x-3\right|\ge\left|1-2x+2x-3\right|=\left|-2\right|=2\)
Vậy min A = 2 khi và chỉ khi ...........................
Sửa một chút : \(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=\left|2x-1\right|+\left|2x-3\right|\)
\(=\left|2x-1\right|+\left|3-2x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\)
Đẳng thức xảy ra khi \(ab\ge0\)
=> \(\left(2x-1\right)\left(3-2x\right)\ge0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}2x-1\ge0\\3-2x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge1\\-2x\ge-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)
2. \(\hept{\begin{cases}2x-1\le0\\3-2x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le1\\-2x\le-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\ge\frac{3}{2}\end{cases}}\)( loại )
=> MinA = 2 <=> \(\frac{1}{2}\le x\le\frac{3}{2}\)
Tìm nghiệm nguyên của: \(x^4+4x^3+10x^2-12x\)
tìm gtnn của biểu thức
A= căn (4x^2 -4x+1)+căn (4x^2-12x+9)
=2x-1+2x-3=4x-4=x^2-x^2+4x-4=x^2-(x^2-4x+4)=x^2-(x-2)^2 vay gtnn la x^2
Tìm GTNN
\(\sqrt{4X^2-4X+1}+\sqrt{4X^2-12X+9}\)