cho a,b,c là các cạnh của tam giác và a^3+b^3+c^3-3abc=0
c/m là tam giác đều
Gọi a , b , c là độ dài 3 cạnh của tam giác thỏa mãn : a^3 + b^3 + c^3 = 3abc. Chứng minh tam giác đều.
C/m \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
+) Từ giải thiết suy ra : \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)( Vì a + b + c > 0 )
+) Biến đổi được kết quả : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Rightarrow\)Tam giác đó là tam giác đề ( đpcm 0
Vậy tam giác đó là tam giác đều
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Vì \(a,b,c\)là độ dài 3 cạnh của tam giác nên \(a+b+c=0\)
\(\Rightarrow\)\(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2-\left(c-a\right)^2=0\) (mk lm tắt nhé)
\(\Rightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)\(\Rightarrow\)\(a=b=c\)
Vậy tam giác đó là tam giác đều
mk nhầm chút nhé
Vì a,b,c là độ dài các cạnh của tam giác nên \(a+b+c\ne0\)
Cho ba cạnh của tam giác ABC là a,b,c Chứng minh tam giác ABC đều với các đẳng thức sau
a)(a+b+c)^2=3(ab+bc+ca)
b)a^3+b^3+c^3-3abc=0
c)(a+b)(b+c)(c+a)=8abc
Cho tam giác ABC có độ dài ba cạnh là: a,b,c. Thỏa mãn điều kiện a3+b3+c3= 3abc. Chứng minh tam giác ABC là tam giác đều
thực hiện trừ 2 vế ta (vế trái cho vế phải) ta được
(a+b+c).(a^2+b^2+c^2 -ab-bc-ca)=0
nên hoặc a+b+c=0 hoặc nhân tử còn lại bằng 0
mà a,b,c là 3 cạnh 1 tam giác nên a+b+c>0
vậy a^2+b^2+c^2 -ab-bc-bc-ca=0
đặt đa thức đó bằng A
A=0 nên 2xA=0
phân tích thành hằng đẳng thức ta có (a-b)2+(b-c)2+(c-a)2=0
nên a=b=c vậy là tam giác đều
Lời giải:
$a^3+b^3+c^3=3abc$
$\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0$
$\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$
Hiển nhiên $a+b+c>0$ với mọi $a,b,c$ là độ dài 3 cạnh tam giác.
$\Rightarrow a^2+b^2+c^2-ab-bc-ac=0$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Do mỗi số $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c>0$.
$\Rightarrow$ để tổng của chúng bằng $0$ thì:
$(a-b)^2=(b-c)^2=(c-a)^2=0$
$\Rightarrow a=b=c$
$\Rightarrow ABC$ là tam giác đều.
Cho tam giác có độ dài 3 cạnh là a, b, c thỏa mãn: a^3+ b^3+c^3 =3abc. Chứng minh: Tam giác đó đều.
thực hiện trừ 2 vế ta (vế trái cho vế phải) ta được
(a+b+c).(a2+b2+c2-ab-bc-ca)=0
nên hoặc a+b+c=0 hoặc nhân tử còn lại bằng 0
mà a,b,c là 3 cạnh 1 tam giác nên a+b+c>0
vậy a2+b2+c2-ab-bc-bc-ca=0
đặt đa thức đó bằng A
A=0 nên 2xA=0
phân tích thành hằng đẳng thức ta có (a-b)2+(b-c)2+(c-a)2=0
nên a=b=c vậy là tam giác đều
\(a^3+b^3+c^3-3abc\)\(=0\)
\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\)
\(\Rightarrow\left(a+b+c\right).\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right).\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Rightarrow\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Vì a,b,c là độ dài 3 cạnh của tam giác nên a,b,c đều lớn hơn 0
\(\Rightarrow a+b+c\ne0\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\) \(\left(1\right)\)
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(với mọi a,b,c)
Để được (1) thì:
\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)
\(\Rightarrow a=b=c\)( tam giác đều) \(\left(\text{Đ}PCM\right)\)
Cho a,b,c là 3 cạnh của một tam giác thỏa mãn a^3 + b^3 + c^3 - 3abc = 0. Hỏi: Tam giác đó là tam giác gì???
bạn vào câu hỏi tương tự ấy !!! Nó để là tam giác đều !!!
link này có bài tương tự
https://olm.vn/hoi-dap/detail/231888113278.html
Gọi a, b, c là độ dài ba cạnh của tam giác thỏa mãn: a3 + b3 + c3 = 3abc. Chứng minh tam giác đều
dễ mà bạn . áp dụng bất đẳng thức cô-si cho ba số không âm ta có:
a^3+b^3+c^3>=3\(\sqrt[3]{a^3b^3c^3}\)=>a^3+b^3+c^3>=3abc.
dấu bằng xảy ra khi a=b=c. vậy nếu a^3+b^3+c^3=3abc thì a=b=c hay tam giac ABC là tam giác đều!!!!!!
bất đẳng thức cô-si là một trong những BĐT cơ bản rất hay sử dụng khi thi HSG toán 8\(\frac{a+b}{2}>=\sqrt{ab}\)
Chứng minh (\(\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)=>\(a+b>=2\sqrt{ab}\)=>\(\frac{a+b}{2}>=\sqrt{ab}\)vậy nhé !!!!
1. Gọi a,b,c là số đo 3 cạnh của tam giác cho biết: a3+b3+c3-3abc=0. Hỏi tam giác này là tam giác gì?
\(a^3+b^3+c^3-3abc=0\)
\(=>\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(=>\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\)
\(=>\left(a+b+c\right).\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(=>\left(a+b+c\right).\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(=>\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Vì a,b,c là độ dài 3 cạnh của tam giác nên a,b,c đều lớn hơn 0
\(=>a+b+c\ne0\)
\(=>a^2+b^2+c^2-ab-bc-ac=0\)
\(=>2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\left(1\right)\)
Vì : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\) (với mọi a,b,c)
Để (1) thì \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}=>a=b=c}\)
Vậy tam giác đã cho là tam giác đều
Cho a,b,c là độ dài 3 cạnh của tam giác ABC thỏa mãn hệ thức: a³ + b³ + c³ = 3abc. Hỏi tam giác ABC là tam giác gì?
\(a^3-b^3-c^3=3abc\)
\(\Rightarrow a^3-b^3-c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Mà \(a+b+c\ne0\) (độ dài 3 cạnh của 1 tam giác)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left(a-b\right)^2=0;\left(b-c\right)^2=0;\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\)
Do đó tam giác ABC là tam giác đều
Cho a,b,c là 3 cạnh của tam giác ABC thỏa mãn
a3 + b3 + c3 = 3abc
chứng mình rằng: tam giác ABC kaf tam giác đều ( cmr: a = b = c )
ai giúp mình với mình đang cần gấp
Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
Dấu bằng xảy ra <=> a+b+c=0 hoặc \(a^2+b^2+c^2-ab-ac-bc=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
<=> a=b=c