Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dũng Nguyễn tiến
Xem chi tiết
Trần Ái Linh
8 tháng 6 2021 lúc 12:32

PT của đường thẳng cần tìm có dạng: `(d): y=ax+b `

`(d)` vuông góc `(d') : y=1/3 x-7/3 <=> a. 1/3 = -1 <=> a=-3`

`=> y=-3x+b`

`A (0;4) \in (d) <=> 4=-3.0+b <=> b=4`

`=> y=-3a+4`.

Thao Cao Phuong
Xem chi tiết
Lý Bá Đức Thịnh
19 tháng 9 2023 lúc 21:55

a)-(x-y)(x2+xy-1)=-(x3+x2y-x-x2y-xy2+y)

                          =-(x3-xy2-x+y)

                          =-x3+xy2+x-y

b)x2(x-1)-(x3+1)(x-y)=x3-x2-x3+x2y-x+y

                                =-x2+x2y-x+y

c)(3x-2)(2x-1)+(-5x-1)(3x+2)=6x2-3x-4x+2-15x2-10x-3x-2

                                             =-9x2-20x

d) hình như bạn ghi lỗi

Bài 2: C=x(x2-y)-x2(x+y)+y(x2-x)

             =x3-xy-x3-x2y+x2y-xy

             =-2xy

Thay x=1/2,y=-1 vào C, ta có:

        C=-2.1/2.(-1)=1

Vậy C=1 khi x=1/2 và y=-1.

Trần Đức Tùng
Xem chi tiết
Lương Thị Vân Anh
28 tháng 1 2023 lúc 9:17

Ta có 3x( y + 1 ) + y + 1 = 7

          3x( y + 1 ) + ( y + 1 )  = 7

          ( 3x + 1 )( y + 1 ) = 7

Vì x; y nguyên nên 3x + 1 và y + 1 nguyên

Vậy ( 3x + 1 ); ( y + 1 ) ϵ Ư( 7 ) = { 1; -1; 7; -7 }

Lập bảng giá trị

3x + 1 1 -1 -7 7
y + 1  7 -7 -1 1
x 0 \(\dfrac{-2}{3}\) ( loại ) \(\dfrac{-8}{3}\) 2
y 6     0

Vậy các cặp số nguyên ( x; y ) cần tìm để 3x( y + 1 ) + y + 1 = 7 là ( 0; 6 ); ( 2; 0 )

No name
Xem chi tiết
chuyên toán thcs ( Cool...
27 tháng 8 2019 lúc 21:34

=a, (x-3)(x+3)-(x-7)(x+7)= x2 - 9 - x2 + 7

= -2

b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)= (4x-5)2 - 2(4x+5)(3x-2) + (3x-2)2 

= ( 4x - 5 - 3x + 2 )2 

= ( x - 3 )2

c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2=  2(3x-y)(3x+y)+(3x-y)2+(3x+y)2 

= (3x-y)2+ 2(3x-y)(3x+y)+ (3x+y)2 

= ( 3x - y + 3x + y )2 

= ( 6x )2 

= 36x2 

d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)

Nguyễn Phương Uyên
27 tháng 8 2019 lúc 21:36

1, rút gọn

a, (x-3)(x+3)-(x-7)(x+7)

= x^2 - 9 - (x^2 - 49)

= x^2 - 9 - x^2 + 49

= 40

b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)

= 16x^2 - 40x + 25 + 9x^2 - 12x + 4 - 2(12x^2 - 8x + 15x - 10)

= 25x^2 - 52x + 29 - 24x^2 + 16x - 30x + 20

= x^2 - 66x + 49

c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2

= 2(9x^2 - y^2) + 9x^2 - 6xy + y^2 + 9x^2 + 6xy + y^2

= 18x^2 - 2y^2 + 18x^2 + 2y^2

= 36x^2

d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)

= dài vl 

nhu nho nha
Xem chi tiết

Đề yêu cầu làm gì, em ghi rõ ra nhé!

Nguyễn Lê Phước Thịnh
4 tháng 8 2023 lúc 14:27

b: (2x+1)(y-3)=-7

=>(2x+1;y-3) thuộc {(1;-7); (-7;1); (-1;7); (7;-1)}

=>(x,y) thuộc {(0;-4); (-4;4); (-1;10); (3;1)}

c: xy-x+y-1=3

=>(y-1)(x+1)=3

=>(x+1;y-1) thuộc {(1;3); (3;1); (-1;-3); (-3;-1)}

=>(x,y) thuộc {(0;4); (2;2); (-2;-2); (-4;0)}

d: =>x(y+3)+y+3=5

=>(x+1)(y+3)=5

=>(x+1;y+3) thuộc {(1;5); (5;1); (-1;-5); (-5;-1)}

=>(x,y) thuộc {(0;2); (4;-2); (-2;-8); (-6;-4)}

Trần Đức Tùng
Xem chi tiết
Hquynh
28 tháng 1 2023 lúc 9:11

\(a,3x\left(y+1\right)+\left(y+1\right)=7\\ =>\left(3x+1\right)\left(y+1\right)=7\)

\(+,TH1:\left\{{}\begin{matrix}3x+1=1\\y+1=7\end{matrix}\right.=>\left\{{}\begin{matrix}x=0\\y=6\end{matrix}\right.\\ +,TH2:\left\{{}\begin{matrix}3x+1=7\\y+1=1\end{matrix}\right.=>\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ +,TH3:\left\{{}\begin{matrix}3x+1=\left(-1\right)\\y+1=\left(-7\right)\end{matrix}\right.=>\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=-8\end{matrix}\right.\\ +,TH4:\left\{{}\begin{matrix}3x+1=-7\\y+1=-1\end{matrix}\right.=>\left\{{}\begin{matrix}x=-\dfrac{8}{3}\\y=-2\end{matrix}\right.\)

Võ Hồ Như Thủy
Xem chi tiết
Pé Ken
Xem chi tiết
Thắng Nguyễn
7 tháng 6 2016 lúc 22:24

đề bắt lm cái j v

Pé Ken
8 tháng 6 2016 lúc 6:05

phan h da thuc thanh nhan tu

Trần Nam Khánh
Xem chi tiết
Nguyễn Thị Thương Hoài
26 tháng 12 2022 lúc 22:31

a, 3x ( y+1) + y + 1 = 7

(y+1)(3x +1) =7

th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)

th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)

th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)

Vậy (x,y)= (2 ;0);  (0; 6)

b, xy - x + 3y - 3 = 5

   (x( y-1) + 3( y-1) = 5

          (y-1)(x+3) = 5

 th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)

th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)

th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) =>  \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)

vậy (x, y) = ( 8; 2); ( -8; 0);  (-2; 6); (-4; -4)

c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1

⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1  ⋮ 2x + 1

th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8

th2: 2x+ 1 = 1=> x =0; y = 7

th3: 2x+1 = -3 => x =  x=-2  => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3 

th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2

th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2

th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1

th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1

th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0

kết luận

(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)

 

    

 

 

 

   

Ngô Nhật Minh
26 tháng 12 2022 lúc 21:46

 

3xy−2x+5y=293xy−2x+5y=29

9xy−6x+15y=879xy−6x+15y=87

(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77

3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77

(3y−2)(3x+5)=77(3y−2)(3x+5)=77

⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77

Ta có bảng giá trị sau:

Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}