9*[2016-x]=2016
9 x ( 2016 -x) = 2016
\(9\times\left(2016-x\right)=2016\)
\(2016-x=2016:9\)
\(2016-x=224\)
\(x=2016-224\)
\(x=1792\)
chúc bn hok tốt
9 x ( 2016 - x ) = 2016
2016 - x = 2016 : 9
2016 - x = 224
x = 2016 - 224
x = 1792
Vậy x = 1792
Chúc bạn học tốt !!!
9 x ( 2016 - x ) = 2016
2016 - x = 2016 : 9
2016 - x = 224
x = 2016 - 224
x = 1792
\(T\text{ìm a bi\text{ết}: 9 x ( 2016 - a) = 2016 }\)Tìm a biết
9 x ( 2016 - a ) = 2016
9 x ( 2016 - a ) = 2016
2016 - a = 2016 : 9
2016 - a = 224
a = 2016 - 224
a = 1792
9*[2016-x]=2016
9x[2016-x]=2016
2016-x=224 => x=1792
2016-x=-224 => x=2240
2016-x=2016:9=224
x=2016-224
x=179
vậy x=1792
Cho f(x) = x10 - 2016*x9 +......+2016*x2-2016*x +10. Tính f(2015)
3*2016+9*2016+20*2016+28*2016+38*2016+2016+2016
#)Giải :
3 x 2016 + 9 x 2016 + 20 x 2016 + 28 x 2016 + 38 x 2016 + 2016 + 2016
= ( 3 + 9 + 20 + 28 + 38 + 1 + 1 ) x 2016
= 100 x 2016
= 201600
3*2016+9*2016+20*2016+28*2016+38*2016+2016+2016
= 2016 x (3 + 9 + 20 + 28 + 38 + 1 +1)
= 2016 x (12 + 20 + 28 + 38 + 2)
= 2016 x (12 + 28 + 38 + 2 + 20)
= 2016 x ( 40 + 40 + 20)
= 2016 x 100
= 201600
Trả lời
Mk ko ghi lại đề nhá
=2016.(3+9+20+28+38)+2016+2016
=2016.98+2016+2016
=210600.
a, tính GT của đa thức \(f\left(x\right)=\left(x^4-3x+1\right)^{2016}\) tại \(x=9-\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)
b, so sánh \(\sqrt{2017^2-1}-\sqrt{2016^2-1}và\dfrac{2.2016}{\sqrt{2017^2-1}-\sqrt{2016^2-1}}\)
c, tính GTBT: \(sinx.cosx+\dfrac{sin^2x}{1+cotx}+\dfrac{cos^2x}{1+tanx}\)
d, biết \(\sqrt{5}\) là số hữu tỉ, hãy tìm các số nguyên a,b tm::
\(\dfrac{2}{a+b\sqrt{5}}-\dfrac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
a.
\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)
c.
\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)
d.
\(\dfrac{2}{a+b\sqrt{5}}-\dfrac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\\ \Leftrightarrow\dfrac{-a-5b\sqrt{5}}{\left(a+b\sqrt{5}\right)\left(a-b\sqrt{5}\right)}=-9-20\sqrt{5}\\ \Leftrightarrow\dfrac{a+5b\sqrt{5}}{a^2-5b^2}=9+20\sqrt{5}\\ \Leftrightarrow\left(9+20\sqrt{5}\right)\left(a^2-5b^2\right)=a+5b\sqrt{5}\\ \Leftrightarrow9\left(a^2-5b^2\right)+\sqrt{5}\left(20a^2-100b^2\right)-5b\sqrt{5}=a\\ \Leftrightarrow\sqrt{5}\left(20a^2-100b^2-5b\right)=9a^2-45b^2+a\)
Vì \(\sqrt{5}\) vô tỉ nên để \(\sqrt{5}\left(20a^2-100b^2-5b\right)\) nguyên thì
\(\left\{{}\begin{matrix}20a^2-100b^2-5b=0\\9a^2-45b^2+a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}180a^2-900b^2-45b=0\\180a^2-900b^2+20a=0\end{matrix}\right.\\ \Leftrightarrow20a+45b=0\\ \Leftrightarrow4a+9b=0\Leftrightarrow a=-\dfrac{9}{4}b\\ \Leftrightarrow9a^2-45b^2+a=\dfrac{729}{16}b^2-45b^2-\dfrac{9}{4}b=0\\ \Leftrightarrow\dfrac{9}{16}b^2-\dfrac{9}{4}b=0\\ \Leftrightarrow b\left(\dfrac{9}{16}b-\dfrac{9}{4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}b=0\\b=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\a=9\end{matrix}\right.\)
Với \(\left(a;b\right)=\left(0;0\right)\left(loại\right)\)
Vậy \(\left(a;b\right)=\left(9;4\right)\)
Bài 1: Tính:
P=\(\dfrac{3^{2016}-6^{2016}+9^{2016}-12^{2016}+15^{2016}-18^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(P=\dfrac{3^{2016}-6^{2016}+9^{2016}-12^{2016}+15^{2016}-18^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\dfrac{\left(3^{2016}-6^{2016}\right)+\left(9^{2016}-12^{2016}\right)+\left(15^{2016}-18^{2016}\right)}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\dfrac{3^{2016}\left(1-2^{2016}\right)+3^{2016}\left(3^{2016}-4^{2016}\right)+3^{2016}\left(5^{2016}-6^{2016}\right)}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\dfrac{3^{2016}\left(1-2^{2016}+3^{2016}-4^{2016}+5^{2016}-6^{2016}\right)}{-\left(1^{2016}-2^{2016}+3^{2016}-4^{2016}+5^{2016}-6^{2016}\right)}\)
\(=-3^{2016}\).
Vậy \(P=-3^{2016}\)
So sánh
A=\(\dfrac{2016^9+3}{2016^9-1}\) B=\(\dfrac{2016^9}{2016^9-4}\)
Ta có :
\(A=\dfrac{2016^9+3}{2016^9-1}=\dfrac{2016^9-1+4}{2016^9-1}=\dfrac{2016^9-1}{2016^9-1}+\dfrac{4}{2016^9-1}=1+\dfrac{4}{2016^9-1}\)
\(B=\dfrac{2016^9}{2016^9-4}=\dfrac{2016^9-4+4}{2016^9-4}=\dfrac{2016^9-4}{2016^9-4}+\dfrac{4}{2016^9-4}=1+\dfrac{4}{2016^9-4}\)
Vì \(1+\dfrac{4}{2016^9-1}< 1+\dfrac{4}{2016^9-4}\Rightarrow A< B\)
bài 1 tính 1/2016 + 2017x 2015/2016 - 2016
bài 2 tìm X biết rằng ( hỗn số 2 và 1/9 - 15/2135 : 9/4270 ) : x = 222/333 : 212/4040 : 132132/660660
ZẢI DÙM MÌNH NHAK ! MÌNH CẦN GẤP LẮM CHIỀU CÓ TIẾT RỒI!