tìm x,y,z∈Z biết
a)x+y+z=xyz
b)xy+yz+zx=2xyz
Cho x; y; z là các số thực dương thỏa mãn: \(x^2+y^2+z^2+2xyz=1\)
Tìm max của \(A=xy+yz+zx-xyz\)
Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có 2 số cùng phía so với \(\dfrac{1}{2}\)
Không mất tính tổng quát, giả sử đó là y và z
\(\Rightarrow\left(y-\dfrac{1}{2}\right)\left(z-\dfrac{1}{2}\right)\ge0\Leftrightarrow yz-\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{4}\ge0\)
\(\Leftrightarrow y+z-yz\le\dfrac{1}{2}+yz\)
Mặt khác từ giả thiết:
\(1-x^2=y^2+z^2+2xyz\ge2yz+2xyz\)
\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge2yz\left(1+x\right)\)
\(\Leftrightarrow1-x\ge2yz\)
\(\Rightarrow yz\le\dfrac{1-x}{2}\)
Do đó:
\(A=yz+x\left(y+z-yz\right)\le yz+x\left(\dfrac{1}{2}+yz\right)=\dfrac{1}{2}x+yz\left(x+1\right)\le\dfrac{1}{2}x+\left(\dfrac{1-x}{2}\right)\left(x+1\right)\)
\(\Rightarrow A\le-\dfrac{1}{2}x^2+\dfrac{1}{2}x+\dfrac{1}{2}=-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{8}\le\dfrac{5}{8}\)
\(A_{max}=\dfrac{5}{8}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)
Cho x,y,z dương thỏa mãn xy +yz+zx+2xyz =1 .Chứng minh :1/x+1/y+1/z >= 4*(x+y+z)
cho 1+x+y+z=2xyz
tìm giá trị nhỏ nhất và xác định giá trị đó của
P=xy/{1+x+y}+yz/{1+y+z}+zx/{1+z+x}
Phan tich da thuc thanh nhan tu
xy(x+y)+yz(y+z)+zx(x+z)+2xyz
Ta có : \(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)
\(=\left[xy\left(x+y\right)+xyz\right]+\left[yz\left(y+z\right)+xyz\right]+xz\left(x+z\right)\)
\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)\)
\(=y\left(x+y+z\right)\left(x+z\right)+xz\left(x+z\right)\)
\(=\left(x+z\right)\left(xy+y^2+yz+xz\right)\)
\(=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)
Cho x,y,z là các số thực dương thỏa: xy + yz + zx = 2xyz
Tìm MIn của \(P=\frac{x}{z\left(z+x\right)}+\frac{y}{x\left(x+y\right)}+\frac{z}{y\left(y+z\right)}\)
Em thử, sai thì thôi nha, chỗ đặt xong rồi thay vào P em ko biết mình có tính đúng hay sai nữa!
giả thiết \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\).
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\) thì a + b + c = 2; a, b, c > 0 và:
\(P=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{2}{2}=1\)
Đẳng thức xảy ra khi a = b = c = 2/3 hay \(x=y=z=\frac{3}{2}\)
Cho xy(x+y) + yz(y+z) + zx(z+x) +2xyz = 0
Cmr: x2019 + y2019 + z2019 = 0
\(x^{2019}+y^{2019}+z^{2019}=\left(x+y+z\right)^{2019}\)
Em xin lỗi, đây mới là đề đúng ạ !!
Cho các số thực x,y,z không âm và x+y+z=1
tìm giá trị biểu thức :P=xy+yz+zx-2xyz
Cho x,y,z là các số thực dương thoả mãn xy+yz+zx+2xyz=1. Chứng minh rằng : x+y+z>=3/2
Lời giải:
Áp dụng BĐT AM-GM:
$1=xy+yz+xz+2xyz\leq \frac{(x+y+z)^2}{3}+2.\frac{(x+y+z)^3}{27}$
$\Leftrightarrow 1\leq \frac{t^2}{3}+\frac{2t^3}{27}$ (đặt $x+y+z=t$)
$\Leftrightarrow 2t^3+9t^2-27\geq 0$
$\Leftrightarrow (t+3)^2(2t-3)\geq 0$
$\Leftrightarrow 2t-3\geq 0$
$\Leftrightarrow t\geq \frac{3}{2}$ hay $x+y+z\geq \frac{3}{2}$ (đpcm)
Dấu "=" xảy ra khi $x=y=z=\frac{1}{2}$
cho x,y,z là số thực không âm thỏa mãn x+y+z=1 chứng minh rằng : 0 =< xy+yz+zx - 2xyz≤7/27
\(P=xy+yz+zx-2xyz=\left(xy+yz+zx\right)\left(x+y+z\right)-2xyz\)
\(P=xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+xyz\ge0\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị
Do vai trò của x;y;z là như nhau, ko mất tính tổng quát, giả sử \(z=min\left\{x;y;z\right\}\Rightarrow z\le\dfrac{1}{3}\)
\(P=xy\left(1-2z\right)+z\left(x+y\right)=xy\left(1-2z\right)+z\left(1-z\right)\)
\(P\le\dfrac{\left(x+y\right)^2}{4}\left(1-2z\right)+z\left(1-z\right)=\dfrac{\left(1-z\right)^2\left(1-2z\right)}{4}+z\left(1-z\right)\)
\(P\le\dfrac{1+z^2-2z^3}{4}=\dfrac{1}{4}+\dfrac{z.z.\left(1-2z\right)}{4}\le\dfrac{1}{4}+\dfrac{1}{27.4}\left(z+z+1-2z\right)^3=\dfrac{7}{27}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)