Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiếu Gia Họ Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 14:16

\(a,ĐK:x\ge1;x\ne3\\ b,A=\dfrac{\left(\sqrt{x-1}+\sqrt{2}\right)\left(\sqrt{x-1}-\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\)

Lin88
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 2 2022 lúc 20:29

 

a: Trường hợp 1: m=0

Bất phương trình sẽ là \(0x^2+3\cdot0\cdot x+0+1>0\)

=>1>0(luôn đúng)

Trường hợp 2: m<>0

\(\text{Δ}=\left(3m\right)^2-4m\left(m+1\right)\)

\(=9m^2-4m^2-4m=5m^2-4m\)

Để phương trình có nghiệm đúng với mọi số thực x thì \(\left\{{}\begin{matrix}m\left(5m-4\right)< 0\\m>0\end{matrix}\right.\Leftrightarrow0< m< \dfrac{4}{5}\)

Vậy: 0<=m<4/5

b: Trường hợp 1: m=4

\(g\left(x\right)=\left(4-4\right)\cdot x^2+\left(2\cdot4-8\right)x+4-5=-1< 0\)(luôn đúng)

Trường hợp 2: m<>4

\(\text{Δ}=\left(2m-8\right)^2-4\left(m-4\right)\left(m-5\right)\)

\(=4m^2-32m+64-4\left(m^2-9m+20\right)\)

\(=4m^2-32m+64-4m^2+36m-80\)

=4m-16

Để bất phương trình luôn âm thì \(\left\{{}\begin{matrix}4m-16< 0\\m-4< 0\end{matrix}\right.\Leftrightarrow m< 4\)

Vậy: m<=4

Lin88
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 2 2022 lúc 20:30

 

undefined

Thiếu Gia Họ Nguyễn
Xem chi tiết
Monkey D. Luffy
16 tháng 11 2021 lúc 16:08

\(a,ĐK:x\ne3;x\ge1\\ b,A=\dfrac{\left(\sqrt{x-1}+\sqrt{2}\right)\left(\sqrt{x-1}-\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\\ b,A=4\left(2-\sqrt{3}\right)\\ \Leftrightarrow\sqrt{x-1}+\sqrt{2}=8-4\sqrt{3}\\ \Leftrightarrow\sqrt{x-1}=8-4\sqrt{3}-\sqrt{2}\\ \Leftrightarrow x-1=\left(8-4\sqrt{3}-\sqrt{2}\right)^2\\ \Leftrightarrow x=\left(8-4\sqrt{3}-\sqrt{2}\right)^2+1=...\\ d,A=\sqrt{x-1}+\sqrt{2}\ge\sqrt{2}\\ A_{min}=\sqrt{2}\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Lee Lynhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2022 lúc 22:10

Bài 2: 

a: Để A là phân số thì n-1<>0

hay n<>1

b: Để A là số nguyên thì \(n-1\in\left\{1;-1\right\}\)

hay \(n\in\left\{2;0\right\}\)

Đan Linh
Xem chi tiết
Khôi Bùi
8 tháng 4 2022 lúc 1:06

\(P=\dfrac{x^4+x^3-3x-1}{x^2+x+1}=\dfrac{\left(x^2-1\right)\left(x^2+x+1\right)-2x}{x^2+x+1}=x^2-1-\dfrac{2x}{x^2+x+1}\)

Vì x \(\in Z\) nên để P \(\in Z\) thì : \(\dfrac{x}{x^2+x+1}\in Z\) 

Đặt \(A=\dfrac{x}{x^2+x+1}\) . Với x = 0 ; ta có : \(P=-1\in Z\)

Với x khác 0 ; ta có : \(A=\dfrac{1}{x+\dfrac{1}{x}+1}\)

Nếu x > 0 ; ta có : \(0< A\le\dfrac{1}{3}\) ( vì \(x+\dfrac{1}{x}\ge2\) )  => Ko tồn tại g/t nguyên của A (L) 

Nếu x < 0 ; ta có : \(x+\dfrac{1}{x}\le-2\)  \(\Rightarrow x+\dfrac{1}{x}+1\le-1\) 

Suy ra : \(0>A\ge\dfrac{1}{-1}=-1\)  \(\Rightarrow A=-1\) 

" = " \(\Leftrightarrow x+\dfrac{1}{x}=-2\Leftrightarrow x=-1\)

x = -1 ; ta có : P = 2 \(\in Z\) (t/m) 

Vậy ... 

 

 

nguyen ngoc son
Xem chi tiết
Duy Nguyễn
Xem chi tiết

Sửa đề: \(P=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

ĐKXĐ: x>=0

\(2\sqrt{P}< 1\)

=>\(\sqrt{P}< \dfrac{1}{2}\)

=>\(0< =P< \dfrac{1}{4}\)

=>\(\left\{{}\begin{matrix}P>=0\\P-\dfrac{1}{4}< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{\sqrt{x}-2}{\sqrt{x}+1}>=0\\\dfrac{\sqrt{x}-2}{\sqrt{x}+1}-\dfrac{1}{4}< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}-2>=0\\\dfrac{4\left(\sqrt{x}-2\right)-\sqrt{x}-1}{4\left(\sqrt{x}+1\right)}< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}>=2\\4\sqrt{x}-8-\sqrt{x}-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}>=2\\3\sqrt{x}< 7\end{matrix}\right.\Leftrightarrow2< =\sqrt{x}< \dfrac{7}{3}\)

=>\(4< =x< \dfrac{49}{9}\)

Tên Tui Vui Vẻ
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 1 2021 lúc 20:51

Ta có: \(P=\dfrac{4\sqrt{x}+3}{x+\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}}\)

Để P nguyên thì \(\sqrt{x}+3⋮\sqrt{x}\)

mà \(\sqrt{x}⋮\sqrt{x}\)

nên \(3⋮\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}\inƯ\left(3\right)\)

\(\Leftrightarrow\sqrt{x}\in\left\{1;-1;3;-3\right\}\)

mà \(\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}\in\left\{1;3\right\}\)

\(\Leftrightarrow x\in\left\{1;9\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{1;9\right\}\)

Vậy: Để P nguyên thì \(x\in\left\{1;9\right\}\)