Cho tam giác ABC cân tại A lấy các điểm D và E theo thứ tự AB, AC sao cho. chứng minh rằng BE= CD
Cho tam giác ABC cân tại A lấy các điểm D và E theo thứ tự AB, AC sao cho AD= AE . Chứng minh rằng BE= CD
Xét ΔABE và ΔACD có
AB=AC
góc A chung
AE=AD
Do đó: ΔABE=ΔACD
=>BE=CD
Cho tam giác ABC cân tại A. Trên các cạnh bên AB, AC lấy theo thứ tự các điểm D và E sao cho AD = AE.
chứng minh BE=CD
Có: \(\left\{{}\begin{matrix}AD+BD=AB\\AE+EC=AC\end{matrix}\right.\)
Mà: \(\left\{{}\begin{matrix}AD=AE\left(GT\right)\\AB=AC\left(GT\right)\end{matrix}\right.\)
=> BD = EC
Xét ΔBDC và ΔCEB ta có :
BD = EC (cmt)
Góc DBC = Góc ECB (GT)
BC: cạnh chung
=> ΔBDC = ΔCEB (c - g - c)
=> CD = BE (2 cạnh tuwowg ứng)
Cho tam giác ABC cân tại A lấy các điểm Du và E theo thứ tự AB ,AC sao cho AD=AE . Chứng minh BE= CD
Xét ΔABE và ΔACD có
AB=AC
góc A chung
AE=AD
Do đó: ΔABE=ΔACD
=>BE=CD
cho tam giác ABC cân tại A. Lấy E, D theo thứ tự thuộc AC, AB, BE cắt CD tại O. Chứng minh rằng
a, BE=CD
b, DE song song BC
c, tam giác OBD = tam giác OCE
sai đề rồi bạn ơi, đãng lẽ phải là lấy E và D là tđ chứ
Bài 8. Cho tam giác ABC, lấy điểm D thuộc cạnh AB, E thuộc cạnh AC sao cho BD=CE. Gọi I, K, M theo thứ tự là trung điểm của BE và CD, BC a) Chứng minh tam giác IMK cân. b) Gọi giao điểm của IK với AB và AC theo thứ tự là G, H. Chứng minh AG=AH. c) Gọi N là trung điểm của DE. Gọi P và Q theo thứ tự là giao điểm của MN với AB và AC. Chứng minh tam giác APQ cân
a: Xét ΔBEC có
I là trung điểm của BE
M là trung điểm của BC
Do đó: IM là đường trung bình của ΔBEC
Suy ra: \(IM=\dfrac{EC}{2}\left(1\right)\)
Xét ΔDCB có
K là trung điểm của DC
M là trung điểm của BC
Do đó: KM là đường trung bình của ΔDCB
Suy ra: \(KM=\dfrac{BD}{2}\)
mà BD=CE
nên \(KM=\dfrac{CE}{2}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra IM=KM
Cho tam giác ABC cân tại A, lấy điểm D trên AB, điểm E trên cạnh AC sao cho AD = AE. Qua D và A, kẻ các đường thẳng vuông góc với BE cắt BC theo thứ tự ở I và K.
a) chứng minh rằng: IK = KC
b) chứng minh rằng: AD = AE (easy)
Bài 2. Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD = AE. a) Chứng minh rằng: BE = CD b) Chứng minh rằng: góc ABE bằng góc ACD c) Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao? d) Gọi I là trung điểm BC. Chứng minh A, K, I thẳng hàng
a: Xét ΔABE và ΔACDcó
AB=AC
góc BAE chung
AE=AD
=>ΔABE=ΔACD
=>BE=CD
b: ΔABE=ΔACD
=>góc ABE=góc ACD
c: góc ABE+góc KBC=góc ABC
góc ACD+góc KCB=góc ACB
mà góc ABE=góc ACD và góc ABC=góc ACB
nên góc KBC=góc KCB
=>KB=KC
d: AB=AC
KB=KC
=>AK là trung trực của BC
=>A,K,I thẳng hàng
cho tam giác ABC cân tại A lấy điểm D trên cạnh AB điểm E trên cạnh AC sao cho AD=AE. Gọi K là giao điểm của CD và BE. Chứng minh rằng: a)BE=CD b) tam giác KBD=tam giác KCE c)AK là tia phân giác của A d)tam giác KBClaf tam giác cân
tham khảo
https://hoc24.vn/hoi-dap/tim-kiem?id=561093&q=Cho%20tam%20gi%C3%A1c%20ABC%20c%C3%A2n%20t%E1%BA%A1i%20A%20.%20%C4%90i%E1%BB%83m%20D%20thu%E1%BB%99c%20c%E1%BA%A1nh%20AB%20%2C%20%C4%91i%E1%BB%83m%20E%20thu%E1%BB%99c%20c%E1%BA%A1nh%20AC%20sao%20cho%20AD%20%3D%20AE%20.%20G%E1%BB%8Di%20K%20l%C3%A0%20giao%20%C4%91i%E1%BB%83m%20c%E1%BB%A7a%20BE%20v%C3%A0%20CD%20.%20Ch%E1%BB%A9ng%20minh%20r%E1%BA%B7ng%20%20%20a%29%20BE%20%3D%20CD%20%20b%29%20Tam%20gi%C3%A1c%20KBD%20b%E1%BA%B1ng%20tam%20gi%C3%A1c%20KCE%20%20c%29%20AK%20l%C3%A0%20ph%C3%A2n%20gi%C3%A1c%20c%E1%BB%A7a%20g%C3%B3c%20A%20%20d%29%20Tam%20gi%C3%A1c%20KBC%20c%C3%A2n
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔBDC và ΔCEB có
BD=CE
DC=EB
BC chung
Do đó: ΔBDC=ΔCEB
Xét ΔKBD và ΔKCE có
\(\widehat{KBD}=\widehat{KCE}\)
BD=CE
\(\widehat{KDB}=\widehat{KEC}\)
Do đó: ΔKBD=ΔKCE
c: Ta có: ΔKBD=ΔKCE
nên KB=KC
Xét ΔABK và ΔACK có
AB=AC
AK chung
BK=CK
Do đó: ΔABK=ΔACK
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)
hay AK là tia phân giác của góc BAC
1.Cho tam giác ABC cân tại A có góc A = 100 độ. Lấy điểm M thuộc cạnh AB, điểm N thuộc cạnh AC sao cho AM=AN. Chứng minh rằng MN song song với BC và BN=CM(vẽ hình giùm mình luôn nha).
2.Cho tam giác đều ABC. Lấy các điểm A,E,F theo thứ tự thuộc các cạnh AB,BC,CA sao ch AD=BE=CF. Chứng minh rằng tam giác DEF là tam giác đếu
do tam giác abc cân tại a
=>góc abc=180-2*góc a
do am=an
=>tam giác amn can taị a
=>góc amn=180-2*góc a
=>góc amn=góc abc(vì cùng bằng
180-2*góc a)
mà hai góc này ở vị trí so le trong
=>mn song song vs ab
xét 2 tam giác abn và acm có
chung góc a
am=an
ab=ac
=>tg abn=tg acm
=>bm=cm(2 cạnh tương ứng)
cau 2
theo đề bài ta có
tg abc đều =>ab=bc=ca
ad=be=cf
=>ab-ad=bc-be=ac-cf
hay bd=ce=af
xét 3 tg ade,bed và cef ta có
góc a=gócb=gócc
ad=be=cf
bd=ce=af
=> tg ade= tg bed= tg cef
=>de=df=ef
=>tg def là tg đều