Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nấm Chanel
Xem chi tiết
Nguyễn Thị Thu Phương
Xem chi tiết
Trên con đường thành côn...
9 tháng 8 2021 lúc 20:05

undefined

Cá Lệ Kiều
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2021 lúc 22:42

1: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-2}{\sqrt{x}\left(x+\sqrt{x}+1\right)}\)

Ngọc Anh
Xem chi tiết
Nguyễn Thị Thu Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 21:13

1: Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 22:30

2: Ta có: \(A=\left(\dfrac{x+2\sqrt{x}}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)

\(=\dfrac{x+2\sqrt{x}-x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{1}{x-1}\)

3: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

Cold Wind
Xem chi tiết
minh ngọc
Xem chi tiết
HT.Phong (9A5)
14 tháng 9 2023 lúc 5:35

\(\left(\dfrac{2}{2-\sqrt{x}}+\dfrac{3+\sqrt{x}}{x-2\sqrt{x}}\right):\left(\dfrac{2+\sqrt{x}}{2-\sqrt{x}}-\dfrac{2-\sqrt{x}}{2+\sqrt{x}}-\dfrac{4x}{x-4}\right)\) (ĐK: \(x\ne4;x>0\)

\(=\left[\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]:\left[\dfrac{-\left(\sqrt{x}+2\right)}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]\)

\(=\dfrac{-2\sqrt{x}+\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}:\left[\dfrac{-\left(\sqrt{x}+2\right)^2+\left(\sqrt{x}-2\right)^2-4x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]\)

\(=\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{-x-4\sqrt{x}-4+x+4\sqrt{x}+4-4x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{-4x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{-4x}\)

\(=\dfrac{\left(3-\sqrt{x}\right)\left(\sqrt{x}+2\right)}{-4x}\)

\(=-\dfrac{3\sqrt{x}+6-x-2\sqrt{x}}{4x}\)

\(=-\dfrac{\sqrt{x}-x+6}{4x}\)

HT.Phong (9A5)
14 tháng 9 2023 lúc 8:09

\(\left(\dfrac{\sqrt{x}}{x-1}-\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\) (ĐK: \(x\ge0;x\ne1;x\ne\dfrac{1}{9}\)

\(=\left[\dfrac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}\right]\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)

\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right]\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)

\(=\dfrac{x+\sqrt{x}-x+2\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)

\(=\dfrac{3\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)

\(=\dfrac{1}{\sqrt{x}-1}\)

Trang Nguyễn
Xem chi tiết
An Thy
30 tháng 6 2021 lúc 9:25

\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\left(x>0,x\ne9\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2x}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2}{\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)+2x}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}+1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+3\sqrt{x}}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}:\dfrac{7-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{7-\sqrt{x}}=\dfrac{x}{\sqrt{x}-7}\)

\(B=\left(\dfrac{1}{x+\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\left(x>0,x\ne1\right)\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}+1\)

\(=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}+1=-\dfrac{\sqrt{x}+1}{\sqrt{x}}+1\)

\(=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}}=-\dfrac{1}{\sqrt{x}}\)

Ling ling 2k7
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 22:27

a:Ta có: \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

b: Ta có: \(\left(\dfrac{\sqrt{x}+1}{x-2\sqrt{x}}-\dfrac{1}{\sqrt{x}-2}\right)\cdot\left(x-3\sqrt{x}+2\right)\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

Nguyễn Thị Thu Phương
Xem chi tiết
Nguyễn Thị Thu Phương
11 tháng 8 2021 lúc 20:13

nãy đăng ảnh nhưng không hiện, lại phải mất công đánh lại :Đ

 

Nguyễn Lê Phước Thịnh
11 tháng 8 2021 lúc 20:27

a: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

b: Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{x-1}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

 

Nguyễn Lê Phước Thịnh
11 tháng 8 2021 lúc 22:37

c: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)

\(=x+\sqrt{x}-2\sqrt{x}-1+1\)

\(=x-\sqrt{x}\)