Tìm số tự nhiên n để 3n+5 chia hết cho 2n+1
Bài 1: Tìm số tự nhiên n để:
a) (n+5 ) chia hết cho 2
b)(2n +9 chia hết cho (n+1)
c) (3n+5) chia hết cho (n-2)
d) (3n+1) chia hết cho (11-2n)
b) ( 2n + 9 ) chia hết cho ( n + 1 )
=> 2n + 2 + 7 chia hết cho ( n + 1 )
=> 2 . ( n + 1 ) chia hết cho ( n + 1 ) mà 2 . ( n + 1 ) chia hết cho ( n + 1 )
=> 7 chia hết cho ( n + 1 ) => ( n + 1 ) thuộc Ư ( 7 ) = { 1 , 7 }
Vậy n thuộc { 1 , 7 }
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
tìm các số tự nhiên n để:
b/n+5 chia hết cho n-2
c/ 2n+9 chia hết cho n+1
d/ 2n+1 chia hết cho 6-n
e/ 3n+1 chia hết cho 11- 2n
f/ 3n+5 chia hết cho 4n+ 2
n + 5 : hết cho n - 2
=> n - 2 + 7 : hết cho n - 2
=> 7 : hết cho n - 2
=> n - 2 thuộc { 1 ; 7} tự tính n
2n + 9 : hết cho n + 1
=> (2n+9) - 2(n+1) : hết cho n + 1
=> 7 : hết cho n + 1
tương tự câu 1
2n + 1 : hêt cho 6-n
=> (2n+1) + 2(6 - n) : hết cho 6 - n
=> 13 : hết cho 6 - n
tương tự câu 1,2
3n + 1 : hết ccho 11 - 2n
=> 2(3n + 1) + 3(11-2n) : hết cho 11 - 2n
=> 35 : hết cho 11 - 2n
tượng tự 1,2,3
3n + 5 : hết cho 4n + 2
=> 4(3n+5) - 3(4n+2) : hết cho 4n + 2
=> 14 : hết cho 4n + 2
tương tự 1,2,3,4
Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5
Có: 1n + 2n + 3n + 4n
= (1 + 2 + 3 + 4)n
= 10n
Vì 10 ⋮ 5 nên 10n ⋮ 5 (n ∈ N)
Vậy để 1n + 2n + 3n + 4n chia hết cho 5 thì n ∈ N.
Để 1n + 2n + 3n + 4n chia hết cho 5, ta cần tìm số tự nhiên n sao cho tổng này chia hết cho 5.
Ta có: 1n + 2n + 3n + 4n = 10n
Để 10n chia hết cho 5, ta cần n chia hết cho 5.
Vậy, số tự nhiên n cần tìm là các số chia hết cho 5.
⇒ Các số tự nhiên n chia hết cho 5.
--thodagbun--
bài 5:
1) cho A = 5+32+...+32017+32018. Tìm số tự nhiên n biết 2A-1=3n
2) chứng tỏ rằng với mọi số tự nhiên n thì 3n-3+2n-3+3n+1+2n+2 chia hết cho 6
3) tìm tất cả các cặp số tự nhiên (a,b) để 5a +9999 =20b
18) Cho A =\(\dfrac{7^{2016^{2019}}-3^{2016^{2015}}}{5}\)chứng tỏ A là số chẵn.
mn mn mn giúp giúp mình gấp mình sắp đi học rồiiiii
\(2,\\ 3^{n-3}+2^{n-3}+3^{n+1}+2^{n+2}\\ =3^{n-3}\left(1+3^4\right)+2^{n-3}\left(1+2^5\right)\\ =3^{n-3}\cdot82+2^{n-3}\cdot33\)
Vì \(3^{n-3}\cdot82⋮2;⋮3\) nên \(3^{n-3}\cdot82⋮6\)
\(2^{n-3}\cdot33⋮2;⋮3\) nên \(2^{n-3}\cdot33⋮6\)
Do đó tổng trên chia hết cho 6 với mọi \(n\in N\)
Tìm n thuộc N để 2n+5 chia hết cho 3n+1 có giá trị là số tự nhiên
Tìm n thuộc N để 2n+5 chia hết cho 3n+1 có giá trị là số tự nhiên
3.(2n+5) chia hết cho 3n+1
2.(3n+1) chia hết cho 3n+1
suy ra 3.(2n+5)-2.(3n+1) chia hết cho 3n+1
(6n+15)-(6n+2) chia hết cho 3n+1
(6n+15-6n-2) chia hết cho 3n+1
13 chia hết cho 3n+1
vậy ta có bảng
3n+1 13 1
n 4 0
vậy n thuộc{0;4}
Tìm số tự nhiên n để (3n + 2) chia hết cho (2n – 1).
Tìm số tự nhiên n để 3n + 4 chia hết cho 2n + 1