Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hatsune Miku
Xem chi tiết
Lê Hồng Anh
8 tháng 2 2021 lúc 14:47

pơ'ơ

142533

12245698

Khách vãng lai đã xóa
Nguyễn Thị Anh Thư
Xem chi tiết
Trương Hồng Hạnh
8 tháng 12 2016 lúc 18:40

Theo đề bài, ta có:

10a+b- (10b+a)=72\(\Leftrightarrow\)9a-9b=72 \(\Leftrightarrow\) a-b = 8 =>a = 8+b

Mà a,b là số tự nhiên <9 và >1 => 8+b <9

=> b = 1, a = 9

Vậy số tự nhiên \(\overline{ab}\)=91

Kanazuki Miami
4 tháng 1 2020 lúc 21:01

Theo bài ra, ta có: \(\overline{ab}\) - \(\overline{ba}\)

= 10a + b - (10b + a)

= 10a + b - 10b - a

= 9a - 9b = 9(a - b) = 72

\(\Rightarrow\) a - b = 72 : 9 = 8

\(\Rightarrow\) a = 8 + b

Mà a \(\le\) 9 \(\Rightarrow\) 8 + b \(\le\) 9 \(\Rightarrow\) b = 1; a = 9

Vậy \(\overline{ab}\) = 91

Khách vãng lai đã xóa
Phạm Cao Sơn
Xem chi tiết
Phạm Cao Sơn
29 tháng 7 2019 lúc 22:04

ai giúp mk với

Sóii Trắngg
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Trần Quỳnh Mai
18 tháng 5 2017 lúc 20:38

Ta có : \(\overline{ab}-\overline{ba}=72\Rightarrow\left(10a+b\right)-\left(10b+a\right)=72\)

\(\Rightarrow10a+b-10b-a=72\)

\(\Rightarrow10a-10b+b-a=72\)

\(\Rightarrow10\left(a-b\right)-a+b=72\)

\(\Rightarrow10\left(a-b\right)-\left(a-b\right)=72\)

\(\Rightarrow\left(10-1\right)\left(a-b\right)=72\Rightarrow9\left(a-b\right)=72\)

\(\Rightarrow a-b=72\div9\Rightarrow a-b=8\)

Vì : a,b là chữ số \(\Rightarrow0< a,b\le9\)

Mà : a - b = 8 \(\Rightarrow\left\{{}\begin{matrix}a=9\\b=1\end{matrix}\right.\)

Vậy số tự nhiên \(\overline{ab}\) cần tìm là 91

Nguyễn Thị Lý
Xem chi tiết
Nguyễn Thị Lý
15 tháng 9 2017 lúc 5:59

giúp tớ với nhé!

Hoàng Thị Hà Linh
8 tháng 2 2021 lúc 14:47

Bài 5:

Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825

=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683

=> abc chia 1987 dư 304. Mà abc nhỏ nhất

=> abc = 304
Vậy số tự nhiên là 11111304

Khách vãng lai đã xóa
Dương Hồng Bảo Phúc
Xem chi tiết
Nguyễn Đức Trí
22 tháng 8 2023 lúc 11:19

1) \(3^x+3^{x+1}+3^{x+2}=351\)

\(\Rightarrow3^x\left(1+3^1+3^2\right)=351\)

\(\Rightarrow3^x.13=351\)

\(\Rightarrow3^x=27\)

\(\Rightarrow3^x=3^3\)

\(\Rightarrow x=3\)

2) \(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(\Rightarrow C=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)...+2^{96}\left(2+2^2+2^3+2^4\right)\)

\(\Rightarrow C=30+2^4.30...+2^{96}.30\)

\(\Rightarrow C=\left(1+2^4+...+2^{96}\right).30⋮30\)

mà \(30=5.6\)

\(\Rightarrow C⋮5\left(dpcm\right)\)

Tin dễ mà =))
22 tháng 8 2023 lúc 11:40

1,

Có \(3^x\)\(3^{x+1}\) + \(3^{x+2}\) = \(351\)

=> \(3^x\) + \(3^x\).\(3\) + \(3^x\).\(9\) = \(351\)

=> \(3^x\).\(13\) = \(351\)

=> \(3^x\) = \(27\)

=> \(x\) = \(3\)

2,

C = \(2\) + \(2^2\) + \(2^3\) + ... + \(2^{100}\)

2C = \(2^2\) + \(2^3\) + \(2^4\) + ... + \(2^{101}\)

2C - C = \(2^{101}\) - \(2\)

C = \(2^{101}\) - \(2\)

C = \(2\).\(\left(2^{100}-1\right)\)

C = 2.\(\left(\left(2^5\right)^{20}-1^{20}\right)\)

Có \(2^5\) \(-1\) \(⋮\) 5

=> \(\left(\left(2^5\right)^{20}-1^{20}\right)\) \(⋮\) 5

=> C \(⋮\) 5

3,

Xét \(\overline{abcdeg}\)

\(\overline{ab}\).\(10000\) + \(\overline{cd}\).\(100\) + \(\overline{eg}\)

\(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\) + \(9.\left(1111.\overline{ab}+11.\overline{cd}\right)\)

\(\left\{{}\begin{matrix}9.\left(1111.\overline{ab}+11.\overline{cd}\right)⋮9\left(1111.\overline{ab}+11.\overline{cd}\inℕ^∗\right)\\\overline{ab}+\overline{cd}+\overline{eg}⋮9\end{matrix}\right.\)

=> \(\overline{abcdeg}⋮9\)

4,

S = \(3^0+3^2+3^4+...+3^{2002}\)

9S = \(3^2+3^4+3^6+...+3^{2004}\)

9S - S = \(3^2+3^4+3^6+...+3^{2004}\) - (\(3^0+3^2+3^4+...+3^{2002}\))

8S = \(3^{2004}-1\)

=> 8S \(< 3^{2004}\)

Marry
Xem chi tiết
Linh Kiu's
Xem chi tiết