Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trung Vũ
Xem chi tiết
Phan Cả Phát
16 tháng 2 2017 lúc 22:30

Theo bài ra , ta có :

\(A=2x^2+y^2+2xy-6x-2y+10\)

\(\Leftrightarrow A=y^2+2xy+x^2-2y-2x+1+x^2-4x+4+5\)

\(\Leftrightarrow A=\left(y+x\right)^2-2\left(x+y\right)+1+\left(x-2\right)^2+5\)

\(\Leftrightarrow A=\left(y+x-1\right)^2+\left(x-2\right)^2+5\)

\(\left(y+x-1\right)^2\ge0\forall y,x\)

\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(y+x-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(y+x-1\right)^2+\left(x-2\right)^2+5\ge5\forall x,y\)

\(\Rightarrow min_A=5\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{\begin{matrix}y+x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}y+x=1\\x=2\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}y=-1\\x=2\end{matrix}\right.\)

Vậy giá trị nhỏ nhất của A = 5 khi và chỉ khi y = -1 và x =2

Chúc bạn học tốt =))ok

Phan Cả Phát
16 tháng 2 2017 lúc 22:12

= 5 nha từ từ r mik làm

phamducluong
Xem chi tiết
Bùi Hải Đoàn
Xem chi tiết
alibaba nguyễn
12 tháng 1 2017 lúc 8:43

\(A=2x^2+y^2+2xy-6x-2y+10\)

\(=\left(\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1\right)+\left(x^2-4x+4\right)+5\)

\(=\left(x+y-1\right)^2+\left(x-2\right)^2+5\ge5\)

Vậy GTNN là A = 5 khi \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

Đặng Nguyễn Khánh Uyên
12 tháng 1 2017 lúc 7:26

GTNN=7

Bùi Hải Đoàn
13 tháng 1 2017 lúc 7:54

Cảm ơn bác Alibaba nhiều nhé. Chúc bác luôn hạ gục được 40 tên cướp!

Hoang thi dieu linh
Xem chi tiết
Lê Vũ Ngọc Phúc
Xem chi tiết
Akai Haruma
14 tháng 12 2023 lúc 11:40

Lời giải:

$M=(x^2+y^2+2xy)+x^2+y^2-6x-6y+11$

$=(x+y)^2+x^2+y^2-6x-6y+11$

$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+5$

$=(x+y-2)^2+(x-1)^2+(y-1)^2+5\geq 0+0+0+5=5$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+y-2=x-1=y-1=0$

$\Leftrightarrow x=y=1$

Duy Đức Anh Nguyễn
Xem chi tiết
Thư Anh Nguyễn
Xem chi tiết
Phùng Minh Quân
3 tháng 8 2019 lúc 6:40

\(H=x^2+2xy+y^2+2x+2y+x^2+4x+2019=\left(x+y\right)^2+2\left(x+y\right)+\left(x+2\right)^2+2015\)

\(=\left(x+y+1\right)^2+\left(x+2\right)^2+2014\ge2014\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-2;y=1\)

\(I=\left(1-x\right)^2+\left(-2-y\right)^2+\left(x+y\right)^2\ge\frac{\left(1-x-2-y+x+y\right)^2}{3}=\frac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(1-x=-2-y=x+y\)\(\Leftrightarrow\)\(x=\frac{4}{3};y=\frac{-5}{3}\)

Huỳnh Trấn Thành
Xem chi tiết
Thắng Nguyễn
20 tháng 9 2016 lúc 23:24

D=2x2+y2+6x+2y+2xy+2017

=x2+4x+4+x2+y2+1+2x+2y+2xy+2012

=(x+2)2+(x+y+1)2+2012\(\ge\)2012

Dấu = khi x=-2 và y=1

Vậy MinA=2012 khi x=-2 và y=1

NgVH
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 4 2023 lúc 18:33

\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+x^2+6x+9+1978\)

\(=\left(x-y\right)^2+2\left(x-y\right)+1+\left(x+3\right)^2+1978\)

\(=\left(x-y+1\right)^2+\left(x+3\right)^2+1978\ge1978\)

\(A_{min}=1978\) khi \(\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)