Cho P(x)=100x100+99x99+98x98+...+2x2+x. Tinh P(1)
Cho P(x)=100x100+99x99+98x98+...+2x2+x. Tinh P(-1)
P(-1) = 100.(-1)¹⁰⁰ + 99.(-1)⁹⁹ + 98.(-1)⁹⁸ + ... + 2.(-1)² + 1.(-1)
= 100 - 99 + 98 + ... + 2 - 1
= (100 - 99) + (98 - 97) + ... + (2 - 1)
= 1 + 1 + ... + 1 (50 chữ số 1)
= 50
Để tính giá trị của hàm số P(x) tại x = -1, ta thay x = -1 vào công thức của P(x):
P(-1) = 100*(-1)^100 + 99*(-1)^99 + 98*(-1)^98 + … + 2*(-1)^2 + (-1)
Lưu ý rằng (-1)^n sẽ là 1 nếu n là số chẵn và -1 nếu n là số lẻ. Vì vậy, các số hạng có số mũ chẵn sẽ được tính bằng 1 và các số hạng có số mũ lẻ sẽ được tính bằng -1.
Áp dụng công thức này vào biểu thức P(-1), ta có:
P(-1) = 1001 + 99(-1) + 981 + 97(-1) + … + 21 + (-1)(-1)
= 100 - 99 + 98 - 97 + … + 2 - 1
Đây là tổng của 100 số nguyên liên tiếp từ 100 đến 1, với dấu âm xen kẽ giữa các số hạng. Ta có thể nhận thấy rằng các số hạng liên tiếp luôn có hiệu số là -2. Vậy ta có thể tính tổng này bằng cách sử dụng công thức tổng của dãy số học hình bậc nhất:
S = (a1 + an)*n/2
Trong đó:
S là tổng của dãy sốa1 là số đầu tiên trong dãyan là số cuối cùng trong dãyn là số phần tử trong dãyỨng dụng công thức này vào bài toán, ta có:
S = (100 + 1)*50 = 5050
Vậy giá trị của hàm số P(x) tại x = -1 là 5050.
Mọi người giúp mình với mình cần gấp ạ !!!
Cho P(x)=100x100+99x99+98x98+...+2x2+x. Tinh P(1)
Lời giải:
$P(1)=100.1^{100}+99.1^{99}+....+2.1^2+1$
$=100+99+98+...+2+1=100(100+1):2=5050$
A = 1/2x2+1/3x3+...+1/99x99+1/100x100
chứng minh rằng số A ko phải là số tự nhiên
Bạn nào nhanh, đúng mik tick cho nha ^_^
So sánh:
\(A=\dfrac{1}{2x2}\)+\(\dfrac{1}{3x3}\)+\(\dfrac{1}{4x4}\)+......+\(\dfrac{1}{99x99}\)+\(\dfrac{1}{100x100}\)với B= \(\dfrac{99}{100}\)
Ta có :
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+.................+\dfrac{1}{99.99}+\dfrac{1}{100.100}\)
Ta thấy :
\(\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
.............................
\(\dfrac{1}{99.99}< \dfrac{1}{98.99}\)
\(\dfrac{1}{100.100}< \dfrac{1}{99.100}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..................+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...........+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A< 1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(\Rightarrow A< \dfrac{99}{100}\)
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+.....+\dfrac{1}{99.99}+\dfrac{1}{100.100}\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< 1-\dfrac{1}{100}\)
\(A< \dfrac{99}{100}\)
\(A< B\)
Cho P=1/2x2+1/3x3+1/4x4+...+1/100x100.So sánh P và 3/4
các bạn ơi giúp mk voi
so sánh A va B biet
A=1/5x5+1/6x6+1/7x7+.....+1/99x99+1/100x100
b=1/6
ghi ra ca cach làm de hiểu nhất nhé!!!!!!!!!!!!!giúp vs mà mink tick cho may cai cung dc 10 lun
đặt A=1/5x5 +1/6x6 + 1/7x7 + .....+ 1/100x100
=>A>1/5x6 + 1/6x7 +1/7x8 + .... + 1/100x101
=>A>1/5 - 1/6 + 1/6 - 1/7 + +1/7 - 1/8 + ..... + 1/100 - 1/101
=>A> 1/5 - 1/101
=>A>96/505 > 96/576 = 1/6
=>A>1/6
=>A>B
a>1/5x6+1/6x7+...+1/100x101
=1/5-1/6+1/6-1/7+...+1/100-1/101
=1/5-1/101
=101/505-5/101
=96/101
vì 96/101>1/6 nên a>1/6
Cho tổng : A=1/2x2+1/3x3+1/4x4+...+1/100x100. Chứng tỏ A<25/26
A= \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{100}=\frac{99}{100}\)
=> A= \(\frac{99}{100}>\frac{25}{26}\)
Cho tổng A = 1/2x2 + 1/ 3x3 + 1/4x4 + ... + 1/ 100x100. Chứng tỏ rằng A < 25/36
CMR 1/2x2+1/4x4+1/6x6+........=1/100x100<1/2
bn giở sách phát triển nâng cao ra là có mà
ta đặt vế trái là A ta có:
A=1/2.2 .(1+1/2.2+1/3.3+1/4.4+...+1/50.50)
A< 1/2.2.(1+1/1.2+1/2.3+1/3.4+1/4.5+...+1/49.50)
A< 1/2.2.(1+1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+....+1/49-1/50)
A< 1/2.2.(1+1-150)
A< 1/2.2.99/50
A< 1/4.99/50
A< 99/200<100/200=1/2
=>A<1/2
So sánh 1 và 1/1x1 +1/2x2 +1/3x3+...+1/100x100
các bạn giúp mình voi
1 ... 1/1 x 1 + 1/2 x 2 + 1/3 x 3 + ... + 1/100 x 100
1 ... 1+1/2x2+1/3x3+...+1/100x100
1=1/1x1+1/2x2+1/3x3+...+1/100x100