Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Youtuber Minecraft
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 3 2021 lúc 22:03

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=12^2+16^2=400\)

hay AB=20(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow HC^2=AC^2-AH^2=20^2-12^2=256\)

hay HC=16(cm)

Ta có: BH+HC=BC(H nằm giữa B và C)

nên BC=16+16=32(cm)

Chu vi của tam giác ABC là:

\(C_{ABC}=AB+BC+AC=20+32+20=72\left(cm\right)\)

Akai Haruma
29 tháng 3 2021 lúc 22:31

Lời giải:

Áp dụng định lý Pitago cho tam giác $AHC$ vuông tại $H$:

$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

Áp dụng định lý Pitago cho tam giác $AHB$ vuông tại $H$:

$AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20$ (cm)

Chu vi tam giác $ABC$:

$AB+BC+AC=AB+BH+CH+AC=20+16+16+20=72$ (cm)

Akai Haruma
29 tháng 3 2021 lúc 22:37

Hình vẽ:

undefined

Nguyễn Gia Khánh
Xem chi tiết

Tam giác AHC vuông tại H nên :

AC2 = AH2 + HC2

202 = 122 + HC2

=> HC2 = 202 - 122

HC2 = 400 - 144 = 256 = 162

=> HC = 16 cm

Ta có : BC = HC + HB = 16 + 5 = 21 cm

Tam giác ABH vuông tại H nên :

AB2 = AH2 + HB2

AB2 = 122 + 52

AB2 = 144 + 25 = 169 = 132

=> AB = 13 cm

Vậy chu vi tam giác ABC là :

AB + AC + BC = 13 + 20 + 21 = 54 (cm)

Khách vãng lai đã xóa
Trịnh Minh Ngọc
16 tháng 4 2020 lúc 11:40

chu vi là 54 cm

Khách vãng lai đã xóa
Nobi Nobita
16 tháng 4 2020 lúc 14:16

\(\Delta ABH\)vuông tại H \(\Rightarrow AH^2+BH^2=AB^2\)( định lý Pytago )

mà \(AH=12cm\)\(BH=5cm\)

\(\Rightarrow12^2+5^2=AB^2\)\(\Rightarrow AB^2=144+25\)

\(\Rightarrow AB^2=169\)\(\Rightarrow AB=13\)( cm )

\(\Delta AHC\)vuông tại H \(\Rightarrow AH^2+HC^2=AC^2\)( định lý Pytago )

\(\Rightarrow HC^2=AC^2-AH^2\)

mà \(AC=20cm\)\(AH=12cm\)

\(\Rightarrow HC^2=20^2-12^2\)\(\Rightarrow HC^2=400-144\)

\(\Rightarrow HC^2=256\)\(\Rightarrow HC=16\)( cm )

mà \(BC=HB+HC\)\(\Rightarrow BC=5+16=21\)( cm )

\(\Rightarrow P_{ABC}=AB+AC+BC=13+20+21=54\)( cm )

Vậy chu vi của \(\Delta ABC\)là 54 cm

Khách vãng lai đã xóa
Cao Minh Ngoc
Xem chi tiết
anh_tuấn_bùi
Xem chi tiết
Phạm Hồ Thanh Quang
14 tháng 6 2017 lúc 9:29

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

Jepz Ki
17 tháng 9 2019 lúc 21:18

Câu này dễ

AH 12cm

AC13cm

AB13cm

Ngọc Anh
Xem chi tiết
My Tran
22 tháng 7 2018 lúc 13:36

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

Không Tên
22 tháng 7 2018 lúc 20:37

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

thám tử lừng danh cô đơn
Xem chi tiết
Nguyễn Huy Tú
11 tháng 3 2022 lúc 20:18

bạn đăng tách ra nhé

 Bài 1 : 

Theo định lí Pytago tam giác ABC vuông tại A

\(AB=\sqrt{BC^2-AC^2}=9cm\)

Chu vi tam giác ABC là 41 + 40 + 9 = 90  cm 

Nguyễn Hữu Quang
Xem chi tiết
Nguyễn Đức Trí
14 tháng 7 2023 lúc 23:04

Bài 3 :

\(BC=HC+HB=16+9=25\left(cm\right)\)

\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)

\(\Rightarrow AB=15\left(cm\right)\)

\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)

Bài 6:

\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)

\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC) 

\(BC=BH+HC=2+2=4\left(cm\right)\)

Chu vi Δ ABC :

\(4+4+4=12\left(cm\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 9 2019 lúc 8:18

mai linh tran
28 tháng 1 2022 lúc 16:45

ABCH??20cm16 cm9 cm

Lg

*Áp dụng định lý py-ta-go ta có: (Δ AHC)

AC2=AH2+HC2

202=AH2+162

400=AH2+256

AH2=144

AH=√144 =12

*Áp dụng định lý py-ta-go ta có: (Δ AHB)

AB2=AH2+BH2

AB2=122+92

AB2=225

AB=√225 =15

 
Kiên
Xem chi tiết

\(AB^2=AH^2+BH^2\)

\(AB=12^2+5^2=169\)

\(AB=\sqrt{169}=13\left(cm\right)\)

▲AHC vuông tại H ta có:

HC\(^2\)=\(AC^2-AH^2\)=\(20^2-12^2\)=256

\(\)Chu vi ▲ABC là:

AB+BC+AC=AB+BH+HC+AC=\(13+5+16+20=54\left(cm\right)\)

 

Dark_Hole
17 tháng 2 2022 lúc 10:36

Tham khảo: 

Tam giác AHC vuông tại H nên :

AC2 = AH2 + HC2

202 = 122 + HC2

=> HC2 = 202 - 122

HC2 = 400 - 144 = 256 = 162

=> HC = 16 cm

Ta có : BC = HC + HB = 16 + 5 = 21 cm

Tam giác ABH vuông tại H nên :

AB2 = AH2 + HB2

AB2 = 122 + 52

AB2 = 144 + 25 = 169 = 132

=> AB = 13 cm

Vậy chu vi tam giác ABC là :

AB + AC + BC = 13 + 20 + 21 = 54 (cm)

scotty
17 tháng 2 2022 lúc 10:54

undefined

Ta có : \(\Delta ABH\) vuông tại H

Theo đl pytago ta có :   \(AH^2+BH^2=AB^2\)

-> \(AB=\sqrt{12^2+5^2}=13\left(cm\right)\)

 \(\Delta ACH\) vuông tại H

Theo đl pytago ta có :   \(AC^2-AH^2=CH^2\)

-. \(CH=\sqrt{20^2-12^2}=16\left(cm\right)\)

Chu vi \(\Delta ABC=AB+AC+BC=13+20+16+5=54\left(cm\right)\)